Abstract
The aim of this study was to recognize the mite fauna associated with apple orchards in southern Brazil and present a dichotomous key of the species sampled and those already reported in apple trees in southern Brazil. The studies were carried out in the 2020/2021 harvest in seven apple orchards of the Eva, Fuji and Gala cultivars located in the municipalities of Muitos Capões, Antônio Prado (Rio Grande do Sul state) and São Joaquim (Santa Catarina state). The orchards were divided into quadrants and sampling was carried out monthly. In each orchard, 40 plants were sampled, with three leaves of each plant collected in apical, median and basal regions of a median branch. In addition, monthly five species of spontaneous plants per orchard were sampled. A total of 8,425 mites were found, with the greatest abundance in Antônio Prado (50%), followed by Muitos Capões (35.5%) and São Joaquim (14.5%). The specimens found belong to 29 families, 64 genera and 99 species, in addition to mites of the order Oribatida. The greatest diversity was found in spontaneous vegetation (59 species), being 19 exclusives to apple trees and 21 species common to apple trees and spontaneous vegetation. Phytoseiidae was the family that presented the greatest richness, with 16 species, of which seven were common in apple trees and spontaneous plants. The most abundant species was Aculus schlechtendali Nalepa (Eriophyidae) (39.5%), followed by Panonychus ulmi (Koch) (Tetranychidae) (14.6%), Polyphagotarsonemus latus (Banks) (Tarsonemidae) (9.4%) and Neoseiulus californicus (McGregor) (Phytoseiidae) (7.4%). These results suggest that the mite fauna present in apple orchards in different landscapes and management are distinct, with a greater diversity of phytoseiid mites present in organic areas. Therefore, to maintain a greater diversity of predatory mites in these orchards, organic management seems to be the most appropriate. Furthermore, the high acarine diversity found in spontaneous vegetation demonstrates the importance of maintaining these plants in orchards that serve as refuges and reservoirs, favoring the permanence of natural enemies in these environments.
Keywords
Aculus schlechtendali; Eva; Fuji; Gala; Neoseiulus californicus; Panonychus ulmi
Resumo
O objetivo deste estudo foi reconhecer a acarofauna associada a pomares de macieira no sul do Brasil e apresentar uma chave dicotômica das espécies amostradas e daquelas já relatadas em macieiras no sul do Brasil. Os estudos foram realizados na safra 2020/2021 em sete pomares de macieiras das cultivares Eva, Fuji e Gala localizados nos municípios de Muitos Capões, Antônio Prado (RS) e São Joaquim (SC). Os pomares foram divididos em quadrantes e a amostragem foi realizada mensalmente. Em cada pomar foram amostradas 40 plantas, sendo três folhas de cada planta coletadas nas regiões apical, mediana e basal de um ramo mediano. Além disso, mensalmente foram amostradas cinco espécies de vegetação espontânea por pomar. Foram encontrados 8.425 ácaros, com maior abundância em Antônio Prado (50%), seguido por Muitos Capões (35,5%) e São Joaquim (14,5%). Os exemplares encontrados pertencem a 29 famílias, 64 gêneros e 99 espécies, além de ácaros da ordem Oribatida. A maior abundância foi encontrada em vegetação espontânea (59 espécies), sendo 19 exclusivas de macieiras e 21 espécies comuns a macieiras e vegetação espontânea. Phytoseiidae foi a família que apresentou maior riqueza, com 16 espécies, das quais sete eram comuns em macieiras e vegetação espontânea. A espécie mais abundante foi Aculus schlechtendali Nalepa (Eriophyidae) (39,5%), seguida por Panonychus ulmi (Koch) (Tetranychidae) (14,6%), Polyphagotarsonemus latus (Banks) (Tarsonemidae) (9,4%) e Neoseiulus californicus (McGregor) (Phytoseiidae) (7,4%). Esses resultados sugerem que a acarofauna presente em pomares de macieira em diferentes paisagens e manejos são distintas, com maior diversidade de ácaros fitoseídeos presentes em áreas orgânicas. Portanto, para manter uma maior diversidade de ácaros predadores nesses pomares, o manejo orgânico parece ser o mais adequado. Além disso, a elevada diversidade de ácaros encontrada na vegetação espontânea demonstra a importância da manutenção destas plantas em pomares que servem como refúgios e reservatórios, favorecendo a permanência de inimigos naturais nestes ambientes.
Palavras-chave
Aculus schlechtendali; Eva; Fuji; Gala; Neoseiulus californicus; Panonychus ulmi
Introduction
Brazil is among the largest apple producers (Malus domestica Borkh: Rosaceae) in the world (Kist et al. 2019KIST, B.B., SANTOS, C.E., CARVALHO, C. & BELING, R.R. (2019). Anuário Brasileiro da Maçã. Editora Gazeta, 56. Available from: https://www.editoragazeta.com.br/produto/anuario-brasileiro-de-horti-fruti-2019/. (Accessed on 01 August 2022).
https://www.editoragazeta.com.br/produto...
), with cultivation concentrated in the highest regions of the states of Santa Catarina and Rio Grande do Sul, largest producers, followed by Paraná (Kist et al. 2019KIST, B.B., SANTOS, C.E., CARVALHO, C. & BELING, R.R. (2019). Anuário Brasileiro da Maçã. Editora Gazeta, 56. Available from: https://www.editoragazeta.com.br/produto/anuario-brasileiro-de-horti-fruti-2019/. (Accessed on 01 August 2022).
https://www.editoragazeta.com.br/produto...
). There is a significant number of apple cultivars, with Gala and Fuji being the most important, but more recent cultivars, such as Eva, have achieved relevance in national production (Kist et al. 2019KIST, B.B., SANTOS, C.E., CARVALHO, C. & BELING, R.R. (2019). Anuário Brasileiro da Maçã. Editora Gazeta, 56. Available from: https://www.editoragazeta.com.br/produto/anuario-brasileiro-de-horti-fruti-2019/. (Accessed on 01 August 2022).
https://www.editoragazeta.com.br/produto...
).
Conventional agriculture is widely used in several cultures due to its high productivity, but it presents risks that include loss of biodiversity, environmental pollution and risk to human health (Gomiero et al. 2011GOMIERO, T., PIMENTEL, D. & PAOLETTI, M.G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic farming. Critical Reviews in Plant Sciences 30, 95–124. https://doi.org/10.1080/07352689.2011.554355
https://doi.org/10.1080/07352689.2011.55...
, Campbell et al. 2017CAMPBELL, B.M., BEARE, D.J., BENNETT, E.M., HALL-SPENCER, J.M., INGRAM, J.S., JARAMILLO, F. & SHINDELL, D. (2017). Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and society 22(4). https://doi.org/10.5751/ES-09595-220408.
https://doi.org/10.5751/ES-09595-220408...
). Aiming at sustainable development and better use of natural resources (Walker et al. 2017WALKER, J.T., SUCKLING, D.M. & WEARING, C.H. (2017). Past, present, and future of integrated control of apple pests: the New Zealand experience. Annual Review of Entomology 62, 231–248. https://doi.org/10.1146/annurev-ento-031616-035626
https://doi.org/10.1146/annurev-ento-031...
, Zhu et al. 2018ZHU, Z., JIA, Z., PENG, L., CHEN, Q., HE, L., JIANG, Y. & GE, S. (2018). Life cycle assessment of conventional and organic apple production systems in China. Journal of Cleaner Production 201, 156–168. https://doi.org/10.1016/j.jclepro.2018.08.032.
https://doi.org/10.1016/j.jclepro.2018.0...
, Willet et al. 2019) the organic agriculture system has stood out in several countries (Gomiero et al. 2011GOMIERO, T., PIMENTEL, D. & PAOLETTI, M.G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic farming. Critical Reviews in Plant Sciences 30, 95–124. https://doi.org/10.1080/07352689.2011.554355
https://doi.org/10.1080/07352689.2011.55...
, Smith-Spangler et al. 2012SMITH-SPANGLER, C., BRANDEAU, M.L., HUNTER, G.E., BAVINGER, J.C., PEARSON, M., ESCHBACH P.J., SUNDARAM V., LIU H., SCHIRMER P., STAVE C., OLKIN, I. & BRAVATA, D.M. (2012). Are organic foods safer or healthier than conventional alternatives? The systematic review. Annals of internal medicine 157, 348–366. https://doi.org/10.7326/0003-4819-157-5-201209040-00007
https://doi.org/10.7326/0003-4819-157-5-...
, Caprio et al. 2015CAPRIO, E., NERVO, B., ISAIA, M., ALLEGRO, G. & ROLANDO, A. (2015). Organic versus conventional systems in viticulture: comparative effects on spiders and carabids in vineyards and adjacent forests. Agricultural Systems 136, 61–69. https://doi.org/10.1016/j.agsy.2015.02.009.
https://doi.org/10.1016/j.agsy.2015.02.0...
, Gomiero 2018GOMIERO, T. (2018). Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Applied Soil Ecology 123, 714–728. https://doi.org/10.1016/j.apsoil.2017.10.014
https://doi.org/10.1016/j.apsoil.2017.10...
). Pesticide spraying has been the main criterion used to differentiate organic from conventional management (Sumberg & Giller 2022SUMBERG, J. & GILLER, K.E. (2022). What is ‘conventional’agriculture? Global Food Security 32, 100617. https://doi.org/10.1016/j.gfs.2022.100617
https://doi.org/10.1016/j.gfs.2022.10061...
). Another alternative to conventional agriculture is regenerative agriculture, which seeks to improve soil protection, not using machinery and maintaining cover with spontaneous or non-spontaneous vegetation (The Soil Association, 2021THE SOIL ASSOCIATION. (2021). Soil Association Standards: Farming and Growing. vo.18.6 (Version 18.6). Updated on 12th February 2021. The Soil Association, Bristol. https://policycommons.net/artifacts/1798421/soil-association-standards-farming-and-growing-version-186/2530065/fragments/ (Accessed 1 March 2023).
https://policycommons.net/artifacts/1798...
), if necessary, this system allows the use of pesticides for pest control in the Integrated Pest Management.
Landscape management can contribute to the sustainable control of pest species, as the composition of the environment can directly affect the abundance of a herbivore, affecting its dispersal, mortality or reproduction, or indirectly, affecting its natural enemies (Veres et al. 2013VERES, A., PETIT, S., CONORD, C. & LAVIGNE, C. (2013). Does landscape composition affect pest abundance and their control by natural enemies? A review. Agriculture, Ecosystems & Environment 166, 110–117. https://doi.org/10.1016/j.agee.2011.05.027
https://doi.org/10.1016/j.agee.2011.05.0...
). Spontaneous growth vegetation occurs associated with orchards, usually between the rows of trees and can be native or exotic, with natural germination and rapid growth (Lykouressis et al. 2008LYKOURESSIS, D., GIATROPOULOS, A., PERDIKIS, D. & FAVAS, C. (2008). Assessing the suitability of noncultivated plants and associated insect prey as food sources for the omnivorous predator Macrolophus pygmaeus (Hemiptera: Miridae). Biological Control 44(2), 142–148. https://doi.org/10.1016/j.biocontrol.2007.11.003
https://doi.org/10.1016/j.biocontrol.200...
, Diehl et al. 2012DIEHL, M., FERLA, N.J. & JOHANN, L. (2012). Plantas associadas a videiras: uma estratégia para o controle biológico no Rio Grande do Sul. Arquivos do Instituto Biológico 79(4), 579–586.). The morphology of some of these plants consists of trichomes, domatia and nectaries, which are beneficial structures for the plant and offer refuge, a safe place for oviposition and provide alternative foods such as pollen and nectar to mite species (Agrawal & Karban 1997AGRAWAL, A.A. & KARBAN, R. (1997). Domatia mediate plantarthropod mutualism. Nature 387(6633), 562–563. https://doi.org/10.1038/42384.
https://doi.org/10.1038/42384...
, Ferla & Moraes 2002FERLA, N.J. & MORAES, G.J.D. (2002). Ácaros (Arachnida, Acari) da seringueira (Hevea brasiliensis Muell. Arg.) no Estado do Mato Grosso, Brasil. Revista Brasileira de Zoologia 19, 867–888. https://doi.org/10.1590/S0101-81752002000300025.
https://doi.org/10.1590/S0101-8175200200...
, Prischmann & James 2003PRISCHMANN, D.A. & JAMES, D.G. (2003). Phytoseiid (Acari) on unsprayed vegetation in southcentral Washington: Implications for biological control or spider mites on wine grapes. International Journal of Acarology 29(3), 279–287. https://doi.org/10.1080/01647950308684340
https://doi.org/10.1080/0164795030868434...
, Matos et al. 2006MATOS, C.H.C., PALLINI, A., CHAVES, F.F., SCHOEREDER, J.H. & JANSSEN, A. (2006). Do domatia mediate mutualistic interactions between coffee plants and predatory mites? Entomologia Experimentalis et Applicata 118(3), 185–192. https://doi.org/10.1111/j.1570-7458.2006.00381.x
https://doi.org/10.1111/j.1570-7458.2006...
, Duso et al. 2010DUSO, C., CASTAGNOLI, M., SIMONI, S. & ANGELI, G. (2010). The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Experimental and Applied Acarology 51, 151–168. https://doi.org/10.1007/s10493-009-9300-0.
https://doi.org/10.1007/s10493-009-9300-...
). Certain plants, associated with orchards, play an important ecological role as they host species that help in the biological control of agricultural pests, as they naturally migrate from this spontaneous vegetation to the main crop of the orchard (Tixier et al. 2000TIXIER, M.S., KREITER, S., AUGER, P., SENTENAC, G., SALVA, G. & WEBER, M. (2000). Phytoseiid mite species located in uncultivated areas surrounding vineyards in three French regions. Acarologia 41,127–140., Altieri 2002ALTIERI, M.A. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, ecosystems & environment 93(1–3), 1–24. https://doi.org/10.1016/S0167-8809(02)00085-3.
https://doi.org/10.1016/S0167-8809(02)00...
, Kreiter et al. 2003KREITER, S., TIXIER, M-S. & BOURGEOIS, T. (2003). Do generalist phytoseiid mites (Gamasida: Phytoseiidae) have interactions with their host plants? International Journal of Tropical Insect Science 23, 35–50. https://doi.org/10.1017/S1742758400012236
https://doi.org/10.1017/S174275840001223...
, Lykouressis et al. 2008LYKOURESSIS, D., GIATROPOULOS, A., PERDIKIS, D. & FAVAS, C. (2008). Assessing the suitability of noncultivated plants and associated insect prey as food sources for the omnivorous predator Macrolophus pygmaeus (Hemiptera: Miridae). Biological Control 44(2), 142–148. https://doi.org/10.1016/j.biocontrol.2007.11.003
https://doi.org/10.1016/j.biocontrol.200...
, Ji et al. 2022JI, X.Y., WANG, J.Y., DAINESE, M., ZHANG, H., CHEN, Y.J., CAVALIERI, A., JIANG J. & WAN, N.F. (2022). Ground cover vegetation promotes biological control and yield in pear orchards. Journal of Applied Entomology 146(3), 262–271. https://doi.org/10.1111/jen.12965
https://doi.org/10.1111/jen.12965...
).
The indiscriminate use of pesticides in orchards can lead to a reduction in natural enemies and, consequently, to an increase in the population of phytophagous mites, causing economic losses (Van Leeuwen & Dermauw 2016VAN LEEUWEN, T. & DERMAUW, W. (2016). The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual Review of Entomology 61, 475–498. https://doi.org/10.1146/annurev-ento-010715-023907
https://doi.org/10.1146/annurev-ento-010...
, Walker et al. 2017WALKER, J.T., SUCKLING, D.M. & WEARING, C.H. (2017). Past, present, and future of integrated control of apple pests: the New Zealand experience. Annual Review of Entomology 62, 231–248. https://doi.org/10.1146/annurev-ento-031616-035626
https://doi.org/10.1146/annurev-ento-031...
, Schmidt-Jeffris & Beers 2018SCHMIDT-JEFFRIS, R.A. & BEERS, E.H. (2018). Potential impacts of orchard pesticides on Tetranychus urticae: a predator-prey perspective. Crop Protection 103, 56–64. https://doi.org/10.1016/j.cropro.2017.09.009
https://doi.org/10.1016/j.cropro.2017.09...
). Mites of the suborders Prostigmata and Mesostigmata are of greatest agricultural economic importance (Evans 1992EVANS, G.O. (1992). Principles of Acarology. CAB International, Wallingford, p. 563.). Among the Prostigmata they were the phytophagous of the families Eriophyidae, Tarsonemidae, Tenuipalpidae and Tetranychidae, and the predators Stigmaeidae (Jeppson et al. 1975JEPPSON, L.R., KEIFER, H.H. & BAKER, E.W. (1975). Mites injurious to economic plants. University of California Press, 614 p.), respect to Mesostigmata, Phytoseiidae stood out (McMurtry et al. 2013MCMURTRY, J.A., DE MORAES, G.J. & SOURASSOU, N.F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4), 297–320. https://doi.org/10.11158/saa.18.4.1
https://doi.org/10.11158/saa.18.4.1...
, 2015MCMURTRY, J.A., SOURASSOU, N.F. & DEMITE, P.R. (2015). The Phytoseiidae (Acari: Mesostigmata) as biological control agents. Prospects for biological control of plant feeding mites and other harmful organisms, pp. 133–149. https://doi.org/10.1007/978-3-319-15042-0_5
https://doi.org/10.1007/978-3-319-15042-...
, Demite et al. 2014DEMITE, P.R., MCMURTRY, J.A. & DE MORAES, G.J. (2014). Phytoseiidae Database: a website for taxonomic and distributional information on phytoseiid mites (Acari). Zootaxa 3795, 571–577. https://doi.org/10.11646/zootaxa.3795.5.6.
https://doi.org/10.11646/zootaxa.3795.5....
). Eriophyidae and Tetranychidae are phytophagous mites found associated with apple orchards (Ferla et al. 2018FERLA, N.J., SILVA, D.E., NAVIA, D., NASCIMENTO, J.M., JOHANN, L. & LILLO, E. (2018). Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Systematic and Applied Acarology 23(6), 1190–1198. https://doi.org/https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
, Nascimento et al. 2020NASCIMENTO, J.M., SILVA, D.E., PAVAN, A.M., CORRÊA, L.L.C., SCHUSSLER, M., JOHANN, L. & FERLA, N.J. (2020). Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60, 659–667. https://doi.org/https://dx.doi.org/10.24349/acarologia/20204394
https://doi.org/10.24349/acarologia/2020...
). Among these stand out Panonychus ulmi (Koch), Tetranychus urticae Koch (Tetranychidae) and Aculus schlechtendali Nalepa (Eriophyidae) (Ferla et al. 2018FERLA, N.J., SILVA, D.E., NAVIA, D., NASCIMENTO, J.M., JOHANN, L. & LILLO, E. (2018). Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Systematic and Applied Acarology 23(6), 1190–1198. https://doi.org/https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
, Nascimento et al. 2020NASCIMENTO, J.M., SILVA, D.E., PAVAN, A.M., CORRÊA, L.L.C., SCHUSSLER, M., JOHANN, L. & FERLA, N.J. (2020). Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60, 659–667. https://doi.org/https://dx.doi.org/10.24349/acarologia/20204394
https://doi.org/10.24349/acarologia/2020...
, Kasap & Atlihan 2021KASAP, İ. & ATLIHAN, R. (2021). Population growth performance of Panonychus ulmi Koch (Acarina: Tetranychidae) on different fruit trees. Systematic and Applied Acarology 26, 1185–1197. https://doi.org/10.11158/saa.26.7.1
https://doi.org/10.11158/saa.26.7.1...
, Corrêa et al. 2021CORRÊA, L.L.C., SILVA, D.E., NASCIMENTO, J.M.D., OLIVEIRA, S.V. & FERLA, N.J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology 47, 70–73. https://doi.org/10.1080/01647954.2020.1870548.
https://doi.org/10.1080/01647954.2020.18...
, Silva et al. 2022SILVA, D.E., NASCIMENTO, J.M., PAVAN, A.M., CORRÊA, L.L.C., BIZARRO, G.L., FERLA, J.J., TOLDI T., JOHANN L. & FERLA, N.J. (2022). Mite fauna abundance and composition on apples in southern Brazil. Systematic and Applied Acarology 27, 2139–2155. https://doi.org/10.11158/saa.27.11.2
https://doi.org/10.11158/saa.27.11.2...
). The record of the presence of A. schlechtendali in southern Brazil serves as a warning for the apple production chain, as it is a species of quarantine importance present in Brazil (Ferla et al. 2018FERLA, N.J., SILVA, D.E., NAVIA, D., NASCIMENTO, J.M., JOHANN, L. & LILLO, E. (2018). Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Systematic and Applied Acarology 23(6), 1190–1198. https://doi.org/https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
, Nascimento et al. 2020NASCIMENTO, J.M., SILVA, D.E., PAVAN, A.M., CORRÊA, L.L.C., SCHUSSLER, M., JOHANN, L. & FERLA, N.J. (2020). Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60, 659–667. https://doi.org/https://dx.doi.org/10.24349/acarologia/20204394
https://doi.org/10.24349/acarologia/2020...
, Corrêa et al. 2021CORRÊA, L.L.C., SILVA, D.E., NASCIMENTO, J.M.D., OLIVEIRA, S.V. & FERLA, N.J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology 47, 70–73. https://doi.org/10.1080/01647954.2020.1870548.
https://doi.org/10.1080/01647954.2020.18...
, Silva et al. 2022SILVA, D.E., NASCIMENTO, J.M., PAVAN, A.M., CORRÊA, L.L.C., BIZARRO, G.L., FERLA, J.J., TOLDI T., JOHANN L. & FERLA, N.J. (2022). Mite fauna abundance and composition on apples in southern Brazil. Systematic and Applied Acarology 27, 2139–2155. https://doi.org/10.11158/saa.27.11.2
https://doi.org/10.11158/saa.27.11.2...
).
The study of the diversity and seasonality of mite populations associated with plants is of great importance for the advancement of biological control methods for pests in agroecosystems and for the assessment of damage caused and biological changes in these habitats. The aim of this study was to recognize the mite fauna associated with apple orchards, in southern Brazil as well as to perform a dichotomous key with the species associated with these orchards and those already reported in previous works carried out in the same region.
Materials and Methods
1.Study area
The studies were carried out in the 2020/2021 season in seven apple orchards of the Eva, Fuji and Gala cultivars located in the municipalities of Muitos Capões (28°23’23”S 51°15’12”W) and Antônio Prado (28°22 ‘44”S 49°56’12”W), state of Rio Grande do Sul and São Joaquim (28°53’23”S 51°23’06”W), state of Santa Catarina (Figure 1).
Collection points in apple-producing regions in the municipalities of Antônio Prado and Muitos Capões, Rio Grande do Sul, and São Joaquim, Santa Catarina, Brazil. Authorship: Castro, I. S.
Antônio Prado
Three organic orchards of Eva, Fuji and Gala cultivars were evaluated. To control herbivores, Bordeaux mixture, lime sulfur, neem oil and Cera Trap® attractant were used. Spontaneous vegetation was maintained, and mowing was only carried out when there was a need to move. In these orchards, the soil cover was preserved, with the presence of spontaneous vegetation, such as grasses and weeds, in association with litter maintained in the area.
1.2.Muitos Capões
Two conventional orchards were evaluated, one Fuji and the other Gala. In both orchards, the soil was kept unprotected with the use of herbicides and weeding to control pests in the orchards, as well as the spraying of pesticides to control pests.
1.3.São Joaquim
Two orchards with regenerative agriculture were evaluated, one Fuji and the other Gala. In these orchards, the soil was kept covered by spontaneous vegetation, grasses, in association with litter. Weeding was not carried out. Pigs, sheep and chickens were kept grazing throughout the area, feeding on weeds and aborted apple tree fruits. In these areas, when necessary, producers spray pesticides to control pests.
2.Sampling procedures
2.1.Apple tree plants
Samplings were carried out monthly from September 2020 to August 2021. The orchards were divided into quadrants and the sampled trees were marked to identify the origin of the sampled leaves. In each orchard, 40 plants were sampled, selected from the fifth row, counting from the edge, from which three leaves of a median branch of each plant in the apical, median and basal regions of the branch were detached, totaling 120 leaves/area. In the senescence period, branches were collected from the middle part of the plant and three buds selected from the apical, median and basal regions, totaling 120 buds/area. The material was individually packed in previously identified transparent plastic bags, kept at low temperature and taken to the Laboratory of Acarology (Labacari) of the University of Vale do Taquari – Univates, Lajeado, RS.
2.2.Spontaneous vegetation
Five species of spontaneous vegetation most frequent in each month, in the evaluated orchards, were collected in sufficient quantity for a sampling effort of one hour of screening (Diehl et al. 2012DIEHL, M., FERLA, N.J. & JOHANN, L. (2012). Plantas associadas a videiras: uma estratégia para o controle biológico no Rio Grande do Sul. Arquivos do Instituto Biológico 79(4), 579–586.). The collected vegetation was packed separately in plastic bags identified with the name of the respective cultivar and the municipality of origin, stored in a styrofoam box with artificial ice (Gelox®) and immediately transported to Labacari.
3.Identification
3.1.Mite species
The material was examined with Leica S6E stereoscopic microscope, with a fine-tipped brush. The mites were mounted on microscope slides using Hoyer’s medium (Jeppson et al. 1975JEPPSON, L.R., KEIFER, H.H. & BAKER, E.W. (1975). Mites injurious to economic plants. University of California Press, 614 p.) and kept in a stove at a temperature between 50 and 60 °C for approximately eight days, for medium drying, fixation and clarification of the specimens. Morphological identification was made with Zeiss Axio Scope A1 phase contrast optical microscope and proper bibliography (Baker & Tuttle 1994BAKER, E.W. & TUTTLE, D.M. (1994). A guide to the spider mites (Tetranychidae) of the United States. Indira Publishing House, 347 p., Chant & McMurtry 1994CHANT, D.A. & MCMURTRY, J.A. (1994). A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). International Journal of Acarology 20, 223–310. https://doi.org/10.1080/01647959408684022.
https://doi.org/10.1080/0164795940868402...
, 2007CHANT, D.A. & MCMURTRY, J.A. (2007). Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House., Amrine & Stasny 1994AMRINE, J.W. & STASNY, T.A. (1994). Catalog of the Eriophyoidea (Acarina: Prostigmata) of the world. Indira Publishing House., Amrine et al. 2003AMRINE, JR, J.W., STASNY, T.A. & FLECHTMANN, C.H. (2003). Revised keys to world genera of Eriophyoidea (Acari: Prostigmata). Indira Publishing House., Fan & Zhang 2005FAN, Q.H. & ZHANG, Z.Q. (2005). Raphignathoidea (Acari: Prostigmata). Fauna of New Zealand 52. https://doi.org/https://doi.org/10.7931/J2/FNZ.52.
https://doi.org/10.7931/J2/FNZ.52...
, Johann et al. 2013JOHANN, L., CARVALHO, G.S., MAJOLO, F. & FERLA, N.J. (2013). Stigmaeid mites (Acari: Stigmaeidae) from vineyards in the state of Rio Grande do Sul, Brazil. Zootaxa 3701(2), 238–256. https://doi.org/10.11646/zootaxa.3701.2.6
https://doi.org/10.11646/zootaxa.3701.2....
, Skvarla et al. 2014SKVARLA, M.J., FISHER, J.R. & DOWLING, A.P. (2014). A review of Cunaxidae (Acariformes, Trombidiformes): Histories and diagnoses of subfamilies and genera, keys to world species, and some new locality records. ZooKeys 418(1). https://doi.org/10.3897/zookeys.418.7629
https://doi.org/10.3897/zookeys.418.7629...
, Silva et al. 2016SILVA, G.L., METZELTHIN, M.H., SILVA, O.S. & FERLA, N.J. (2016). Catalogue of the mite family Tydeidae (Acari: Prostigmata) with the world key to the species. Zootaxa 4135(1), 1–68. https://doi.org/10.11646/ZOOTAXA.4135.1.1
https://doi.org/10.11646/ZOOTAXA.4135.1....
). The species found in the study were deposited in the Reference Collection of Mites of the Museum of Science Univates (Sisgen: A8302CB and Sisgen: A05CB2A).
Spontaneous vegetation species
After sampling, a sample of each vegetation sampled was mounted on a specimen sheet for identification with specific bibliography (Moreira & Bragança 2011MOREIRA, H.D.C. & BRAGANÇA, H.B.N. (2011). Manual de identificação de plantas infestantes. Campinas: FMC Agricultural Products., Lorenzi 2014LORENZI, H. (2014). Manual de identificação e controle de plantas daninhas. Plantio direto e convencional. (7th ed) Plantarum. 384 p.). Family determination was based on Angiosperm Phylogeny Group IV systems (APG IV, 2016ANGIOSPERM PHYLOGENY GROUP. CHASE, M.W., CHRISTENHUSZ, M.J., FAY, M.F., BYNG, J.W., JUDD, W.S., SOLTIS, D.E., MABBERLEY, D.J., SENNIKOV, A.N., SOLTIS, P.S. & STEVENS, P.F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical journal of the Linnean Society 181(1), 1–20.).
4.Dichotomous key
A dichotomous key was performed with species sampled in this work and those already reported on apple trees (Malus spp.) from Brazil (Figueiredo 1950FIGUEIREDO JR, E.R. (1950). A aranha vermelha da macieira. Biológico, São Paulo 16, 228–230., Flechtmann 1966FLECHTMANN, C.H.W. (1966). Ácaros encontrados em algumas plantas do Estado de São Paulo. Revista de Agricultura 41(4), 161–162., Lorenzato et al. 1986LORENZATO, D., GRELLMANN, E.O., CHOUENE, E.C. & CACHAPUZ, L.M.M. (1986). Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2), 215–242., Lorenzato 1987LORENZATO, D. (1987). Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha – RS. Agronomia Sulriograndense 23(2), 167–183., Lorenzato & Sechi 1993LORENZATO, D. & SECCHI, V.A. (1993). Controle biológico de ácaros da macieira no Rio Grande do Sul: I - Ocorrência e efeitos dos ácaros fitófagos e seus inimigos naturais em pomares submetidos ao controle biológico e com acaricidas. Revista Brasileira de Fruticultura 15(1): 211–220., Flechtmann 1996FLECHTMANN, C.H. (1996). Rediscovery of Tetranychus abacae Baker & Pritchard, additional description and notes on South American spider mites (Acari, Prostigmata, Tetranychidae). Revista Brasileira de Zoologia 13(3), 569–578. https://doi.org/10.1590/S0101-81751996000300005
https://doi.org/10.1590/S0101-8175199600...
, Ferla & Moraes 1998FERLA, N.J. & MORAES, G.J.D. (1998). Ácaros predadores em pomares de maçã no Rio Grande do Sul. Anais da Sociedade Entomológica do Brasil 27, 649–654. https://doi.org/10.1590/S0301-80591998000400019.
https://doi.org/10.1590/S0301-8059199800...
, Lin & Zhang 2002LIN, J. & ZHANG, Z.Q. (2002). Tarsonemidae of the World. Key to genera, geographical distribution, systematic catalogue & annotated bibliography. London: Systematic & Applied Acarology Society, 440., Monteiro 2002MONTEIRO, L.B. (2002). Manejo integrado de pragas em macieira no Rio Grande do Sul II. Uso de Neoseiulus californicus para o controle de Panonychus ulmi. Revista Brasileira de Fruticultura 24(2), 395–405. https://doi.org/10.1590/S0100-29452002000200024
https://doi.org/10.1590/S0100-2945200200...
, Moraes & Flechtmann 2007MORAES, G.J. & FLECHTMANN, C.H.W. (2007). Phytophagous mites of tropical crops in eastern South America. In Acarology XI. Proc XI Int Congress, Merida, Mexico (Vol. 2002, pp. 279–288)., Ferla & Botton 2008FERLA, N.J. & BOTTON, M. (2008). Ocorrência do ácaro vermelho europeu Panonychus ulmi (Koch) (Tetranychidae) associado à cultura da videira no Rio Grande do Sul, Brasil. Ciência Rural 38, 1758–1761. https://doi.org/10.1590/S0103-84782008000600042.
https://doi.org/10.1590/S0103-8478200800...
, Oliveira et al. 2010OLIVEIRA, J.E., SANTOS, A.C., OLIVEIRA, A.C., SOUZA, I.D., LOPES, P.R.C. & GONDIM JR., M.G.C. (2010). Mite diversity on Rosaceae in the São Francisco Valley, northeast Brazil. 13. International Congress of Acarology, Recife, PE, Abstract Book, pp. 193–194., Mineiro et al. 2015MINEIRO, J.L.C., SATO, M.E., RAGA, A. & KOVALESKI, A. (2015). Ácaro-vermelho-da-macieira, Panonychus ulmi (Koch). Embrapa Uva e Vinho-Capítulo em livro científico (ALICE)., Ferla et al. 2018FERLA, N.J., SILVA, D.E., NAVIA, D., NASCIMENTO, J.M., JOHANN, L. & LILLO, E. (2018). Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Systematic and Applied Acarology 23(6), 1190–1198. https://doi.org/https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
). The key was based partially on Muma (1963)MUMA, M.H. (1963). The genus Galendromus Muma, 1961 (Acarina: Phytoseiidae). The Florida Entomologist 46, 15–41. https://doi.org/10.2307/3493355
https://doi.org/10.2307/3493355...
, André (1980)ANDRÉ, H.M. (1980). A generic revision of the family Tydeidae (Acari: Actinedida). IV. Generic descriptions, keys and conclusion. Bulletin et Annales de la Societé royale Belge d´Entomologie 116, 103–168., Denmark (1982)DENMARK, H.A. (1982). Revision of Galendromus Muma, 1961 (Acarina: Phytoseiidae). International Journal of Acarology 8(3), 133–167. https://doi.org/10.1080/01647958208683291.
https://doi.org/10.1080/0164795820868329...
, Baker (1990)BAKER, A.S. (1990). A survey of external morphology of mites of the superfamily Eupodoidea Banks, 1894 (Acari: Acariformes). Journal of Natural History 24(5), 1227–1261. https://doi.org/10.1080/00222939000770741.
https://doi.org/10.1080/0022293900077074...
, Baker and Tuttle (1994)BAKER, E.W. & TUTTLE, D.M. (1994). A guide to the spider mites (Tetranychidae) of the United States. Indira Publishing House, 347 p., Lofego (1998)LOFEGO, A.C. (1998). Morphological characterization and geographical distribution of Amblyseiinae species (Acari: Phytoseiidae) in Brazil (Doctoral dissertation, Dissertation, University of São Paulo, São Paulo, Brazil)., Krantz and Walter (2009)KRANTZ, G.W. & WALTER, D.E. (2009). A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock., Walter et al. (2009)WALTER, D.E., LINDQUIST, E.E., SMITH, I.M., COOK, D.R. & KRANTZ, G.W. (2009). Order trombidiformes. In: Krantz, G.W. & Walter, D.E. eds(2009). A manual of Acarology (3rd ed). Texas Tech University Press; Lubbock, Texas. 807pp., Johann et al. (2013)JOHANN, L., CARVALHO, G.S., MAJOLO, F. & FERLA, N.J. (2013). Stigmaeid mites (Acari: Stigmaeidae) from vineyards in the state of Rio Grande do Sul, Brazil. Zootaxa 3701(2), 238–256. https://doi.org/10.11646/zootaxa.3701.2.6
https://doi.org/10.11646/zootaxa.3701.2....
, Rocha et al. (2014)ROCHA, M.D.S., SILVA, G.L.D. & FERLA, N.J. (2014). A new species of Neoseiulus (Acari: Mesostigmata: Phytoseiidae) with a key for the Brazilian species of the genus. Zoologia 31(3), 271–274. https://doi.org/10.1590/S1984-46702014000300009
https://doi.org/10.1590/S1984-4670201400...
, Beard et al. (2015)BEARD, J.J., OCHOA, R., BAUCHAN, G.R., TRICE, M.D., REDFORD, A.J., WALTERS, T.W. & MITTER, C. (2015). Lucid key: Flat mite genera of the world. Lucid key: Flat mite genera of the world., Rezende et al. (2015)REZENDE, J.M., LOFEGO, A.C., OCHOA, R. & BAUCHAN, G. (2015). New species of Daidalotarsonemus and Excelsotarsonemus (Acari, Tarsonemidae) from the Brazilian rainforest. ZooKeys (475)1. https://doi.org/10.3897/zookeys.475.8827
https://doi.org/10.3897/zookeys.475.8827...
, Demite et al. (2016)DEMITE, P.R., CAVALCANTE, A.C., DIAS, M.A. & LOFEGO, A.C. (2016). A new species and redescription of two species of Euseius Wainstein (Acari: Phytoseiidae) from Cerrado biome areas in Brazil. International Journal of Acarology 42(7), 334–340. https://doi.org/10.1080/01647954.2016.1197311.
https://doi.org/10.1080/01647954.2016.11...
, Fan et al. (2016)FAN, Q.H., FLECHTMANN, C.H. & DE MORAES, G.J. (2016). Annotated catalogue of Stigmaeidae (Acari: Prostigmata), with a pictorial key to genera. Zootaxa 4176(1), 1–199. https://doi.org/https://doi.org/10.11646/zootaxa.4176.1.1.
https://doi.org/https://doi.org/10.11646...
, Paktinat-Saeij et al. (2016)PAKTINAT-SAEIJ, S., BAGHERI, M. & NORONHA, A.C.D.S. (2016). A new species of Agistemus Summers (Acari: Trombidiformes: Stigmaeidae) from Brazil, with a key to the American species. Systematic and Applied Acarology 21, 813–819. https://doi.org/10.11158/saa.21.6.8
https://doi.org/10.11158/saa.21.6.8...
, Silva et al. (2016)SILVA, G.L., METZELTHIN, M.H., SILVA, O.S. & FERLA, N.J. (2016). Catalogue of the mite family Tydeidae (Acari: Prostigmata) with the world key to the species. Zootaxa 4135(1), 1–68. https://doi.org/10.11646/ZOOTAXA.4135.1.1
https://doi.org/10.11646/ZOOTAXA.4135.1....
, Johann et al. (2017)JOHANN, L., SILVA, G.L., BRENTANO, A.C., CARVALHO, G.S., BOTTON, M. & FERLA, N.J. (2017) Chave ilustrada para identificação da fauna acarina na cultura da videira do estado do Rio Grande do Sul, Brasil. Bento Gonçalves. Comunicado técnico-Embrapa, 17 pp. https://doi.org/10.13140/RG.2.2.23868.33922
https://doi.org/10.13140/RG.2.2.23868.33...
, Silva et al. (2020)SILVA, D.E., RUFFATTO, K., do NASCIMENTO, J.M., DA SILVA, R.T.L., JOHANN, L. & FERLA, N.J. (2020). Agistemus floridanus (Stigmaeidae) as a natural enemy of Panonychus ulmi (Tetranychidae) in vineyards of the Brazilian Southern Region. Phytoparasitica 48, 471–475. https://doi.org/10.1007/s12600-020-00798-4
https://doi.org/10.1007/s12600-020-00798...
and Sousa et al. (2020)SOUSA, A.S.G., REZENDE, J.M., LOFEGO, A.C., OCHOA, R., BAUCHAN, G., GULBRONSON, C. & OLIVEIRA, A.R. (2020). Two new species of Tarsonemus (Acari: Tarsonemidae) from Bahia, Brazil. Systematic and Applied Acarology 25(6), 986–1012. https://doi.org/10.11158/saa.25.6.4
https://doi.org/10.11158/saa.25.6.4...
.
Results
A total of 8,425 mites were found, of which 1,908 were present in spontaneous vegetation. The highest abundance was found in Antônio Prado (50%), followed by Muitos Capões (35.5%) and São Joaquim (14.5%). 26 families with 67 species of spontaneous vegetation were collected. Among the plant families, eight had mites (Table 1).
Spontaneous vegetation in apple orchards in the municipalities of Muitos Capões, Antônio Prado, state of Rio Grande do Sul and São Joaquim, state of Santa Catarina, Brazil, assessed between August 2020 and September 2021. Eating habits: P = Predator, G = Generalist and F = Phytophagous.
The mite specimens found belong to 29 families, 64 genera and 99 species. In addition, 684 mites belonging to the suborder Oribatida were found. The greatest diversity of mite species was found in spontaneous vegetation (59 species). 19 species were exclusive from apple trees, and 21 species were common to apple trees and spontaneous vegetation. Phytoseiidae was the family with the greatest diversity, with 16 species, seven of them common in both apple trees and spontaneous vegetation. Tarsonemidae was the second-diversity family with 12 species, followed by Cunaxidae with seven species and Ologamasidae, Stigmaeidae, Tetranychidae and Tydeidae, with six species each. The most abundant species was A. schlechtendali (39.5%), followed by P. ulmi (14.6%), P. latus (9.4%) and Neoseiulus californicus (McGregor) (7.4%). Of these, A. schlechtendali was exclusive from apple trees and the other species were found both in apple trees and spontaneous vegetation. Among the spontaneous vegetation, Plantago australis Lam. (Plantaginaceae) was the species with the highest mite abundance (32.7%), with 56.9% generalists and 41.7% predators. The second species was Vernonanthura tweediana (Baker) H. Rob. (Asteraceae) (16.9%). Among the mites recorded, the highest abundance of predatory mites was on V. tweediana (51.9%).
Below, the mite species and its respective host plants, the municipality of origin of the samples, apple tree cultivar that was being cultivated in the orchard, month and year of collection and the number of specimens collected in parentheses.
Mesostigmata
Ascidae
Asca sp.1
Antônio Prado: EVA – Elephantopus mollis Kunth (Asteraceae) – I-2021 (1), IV-2021 (2), Vernonanthura tweediana (Baker) H. Rob. (Asteraceae) – IV-2021 (3). FUJI – Elephantopus mollis – II-2021 (1), III-2021 (2). GALA – Hypochaeris sp. (Asteraceae) – IX-2020 (1). Muitos Capões: FUJI – Trifolium repens L. (Fabaceae) – III-2021 (4). GALA – Plantago australis Lam. (Plantaginaceae) – V-2021 (2), Vernonanthura tweediana – V-2021 (2). São Joaquim: FUJI – Lolium multiflorum L. (Poaceae) – XI-2020 (5), Plantago australis – I-2021 (2), IV-2021 (2), V-2021 (8), VIII-2021 (1), Verbena litoralis Kunth (Verbenaceae) – IV-2021 (2). GALA – Plantago australis – I-2021 (10), III-2021 (1), VI-2021 (3).
Asca sp.2
Antônio Prado: EVA – Vernonanthura tweediana – V-2021 (1).
Asca sp.3
Antônio Prado: FUJI – Malus domestica Borkh (Rosaceae) – X–2020 (1).
Blattisociidae
Lasioseius sp.
Antônio Prado: FUJI – Plantago australis – IV-2021 (2). GALA – Elephantopus mollis – V-2021 (3), Paspalum urvillei Steud. (Poaceae) – I-2021 (1). Muitos Capões: FUJI – Vernonanthura tweediana – IV-2021 (2). GALA – Plantago australis – V-2021 (1). São Joaquim: FUJI – Plantago australis – XII-2020 (3), II-2021 (1), IV-2021 (1), Trifolium repens – XII-2020 (1), Verbena litoralis – IV-2021 (1). GALA – Holcus lanatus L. (Poaceae) – II-2021 (1).
Digamasellidae
Dendrolaelaps sp.
Antônio Prado: FUJI – Plantago australis – III-2021 (1). São Joaquim: FUJI – Acaena eupatoria Cham. & Schltdl. (Rosaceae) – V-2021 (2), Lolium multiflorum – III-2021 (1), Plantago australis – IV-2021 (2). GALA – Plantago australis – IV-2021 (3).
Laelapidae
Cosmolaelaps sp.1
Antônio Prado: EVA – Elephantopus mollis – III-2021 (1). FUJI – Elephantopus mollis – XII-2020 (2), Lolium multiflorum – XII-2020 (1), Paspalum dilatatum Poir. (Poaceae) – XI-2020 (1).
Cosmolaelaps sp.2
Antônio Prado: EVA – Elephantopus mollis – III-2021 (1). FUJI – Steinchisma hians (Elliott) Nash. (Poaceae) – V-2021 (1).
Gaeolaelaps aculeiferoides (Teng, 1982TENG, K.F. (1982). On some new species and new records of laelapid mites from China (Acarina: Gamasina). Acta Zootaxonomica Sinica 7, 160–165.)
Hypoaspis (Gaeolaelaps) aculeiferoidesTeng, 1982TENG, K.F. (1982). On some new species and new records of laelapid mites from China (Acarina: Gamasina). Acta Zootaxonomica Sinica 7, 160–165.: 161.
Muitos Capões: GALA – Urochloa plantaginea (Link) R. D. Webster (Poaceae) – I-2021 (1).
Pseudoparasitus sp.
Muitos Capões: FUJI – Lolium multiflorum – IX-2020 (1).
Macrochelidae
Macrocheles sp.1
Antônio Prado: FUJI – Plantago australis – III-2021 (2). GALA – Plantago australis – III-2021 (1), VIII-2021 (1). Muitos Capões: GALA – Urochloa plantaginea – I-2021 (3).
Macrocheles sp.2
São Joaquim: FUJI – Plantago australis – V-2021 (1).
Macrocheles subbadius (Berlese, 1904BERLESE, A. (1904). Acari nuovi. Manipulus IIus. Redia 1, 258–280.)
Holostaspis subbadiusBerlese, 1904BERLESE, A. (1904). Acari nuovi. Manipulus IIus. Redia 1, 258–280.: 264.
São Joaquim: FUJI – Plantago australis – V-2021 (1), GALA – III-2021 (1).
Melicharidae
Orolaelaps sp.1
Antônio Prado: EVA – Adiantopsis chlorophylla (Sw.) Fée (Pteridaceae) – VII-2021 (3), Elephantopus mollis – I-2021 (1), Plantago australis – IV-2021 (1). FUJI – Elephantopus mollis – III-2021 (1), Lolium multiflorum – VI-2021 (2), Trifolium repens – VI-2021 (1). GALA – Elephantopus mollis – V-2021 (4), Lolium multiflorum – X-2020 (4), Paspalum pumilum Nees. (Poaceae) – IX-2020 (3).
Orolaelaps sp.2
Antônio Prado: EVA – Adiantopsis chlorophylla – VII-2021 (1). FUJI – Paspalum dilatatum – XI-2020 (2).
Ologamasidae
Gamasiphis sp.
Antônio Prado: EVA – Elephantopus mollis – III-2021 (1). FUJI – Elephantopus mollis – III-2021 (1), Paspalum dilatatum – XI-2020 (2). GALA – Lolium multiflorum – IX–2020 (1). São Joaquim: FUJI – Plantago australis – VII-2021 (2).
Neogamasellevans ammonis
Karg & Schorlemmer, 2009KARG, W. & SCHORLEMMER, A. (2009). New insights into predatory mites (Acarina, Gamasina) from tropical rain forests with special reference to distribution and taxonomy. Zoosystematics and Evolution 85(1), 57–91. https://doi.org/10.1002/zoos.200800016
https://doi.org/10.1002/zoos.200800016...
Neogamasellevans ammonisKarg & Schorlemmer, 2009KARG, W. & SCHORLEMMER, A. (2009). New insights into predatory mites (Acarina, Gamasina) from tropical rain forests with special reference to distribution and taxonomy. Zoosystematics and Evolution 85(1), 57–91. https://doi.org/10.1002/zoos.200800016
https://doi.org/10.1002/zoos.200800016...
: 71–72
Antônio Prado: EVA – Solanum pseudocapsicum L. (Solanaceae) – IX-2020 (1). FUJI – Conyza canadensis (L.) Cronquist (Asteraceae) – X-2020 (1). GALA – Paspalum urvillei – II-2021 (1). Muitos Capões: GALA – Bidens pilosa L. (Asteraceae) – VI-2021 (1). São Joaquim: FUJI – Lolium multiflorum – III-2021 (1).
Neogamasellevans preendopodalis Loots & Ryke, 1967LOOTS, G.C. & RYKE, P.A.J. (1967). Neogamasellevans, a new genus of Rhodacaridae (Acari) from Argentina. Neotropica, Notas Zoologicas Sudamericanas 13(40), 13–18.
Neogamasellevans preendopodalisLoots & Ryke, 1967LOOTS, G.C. & RYKE, P.A.J. (1967). Neogamasellevans, a new genus of Rhodacaridae (Acari) from Argentina. Neotropica, Notas Zoologicas Sudamericanas 13(40), 13–18.: 14.
Muitos Capões: FUJI – Lolium multiflorum – X-2020 (1).
Ologamasus postpilus
Karg & Schorlemmer, 2009KARG, W. & SCHORLEMMER, A. (2009). New insights into predatory mites (Acarina, Gamasina) from tropical rain forests with special reference to distribution and taxonomy. Zoosystematics and Evolution 85(1), 57–91. https://doi.org/10.1002/zoos.200800016
https://doi.org/10.1002/zoos.200800016...
Ologamasus postpilusKarg & Schorlemmer, 2009KARG, W. & SCHORLEMMER, A. (2009). New insights into predatory mites (Acarina, Gamasina) from tropical rain forests with special reference to distribution and taxonomy. Zoosystematics and Evolution 85(1), 57–91. https://doi.org/10.1002/zoos.200800016
https://doi.org/10.1002/zoos.200800016...
: 77–78.
Antônio Prado: EVA – Plantago australis – VIII-2021 (1). FUJI – Plantago australis – VI-2021 (1). GALA – Elephantopus mollis – V-2021 (1).
Ologamasus margaridae
Bizarro & Rode, 2023BIZARRO, G.L., RODE, P.A., SCHUSSLER, M., COSTA, T.D. & FERLA, N.J. (2023). Two new species of the genus Ologamasus (Ologamasidae) from apple orchards in southern Brazil. Zootaxa 5375(4), 495–514. https://doi.org/10.11646/zootaxa.5375.4.3.
https://doi.org/10.11646/zootaxa.5375.4....
Ologamasus margaridaeBizarro & Rode, 2023BIZARRO, G.L., RODE, P.A., SCHUSSLER, M., COSTA, T.D. & FERLA, N.J. (2023). Two new species of the genus Ologamasus (Ologamasidae) from apple orchards in southern Brazil. Zootaxa 5375(4), 495–514. https://doi.org/10.11646/zootaxa.5375.4.3.
https://doi.org/10.11646/zootaxa.5375.4....
: 495–514.
Antônio Prado: FUJI – Cantinoa mutabilis (Rich.) Harley & J. F. B. Pastore (Lamiaceae) – VII-2021 (6), Elephantopus mollis – III-2021 (1), Steinchisma hians – V-2021 (1), Plantago australis – VI-2021 (2), Paspalum dilatatum – XI-2020 (8). GALA – Elephantopus mollis – V-2021 (1), Hypochaeris sp. – XII-2020 (2), Lolium multiflorum – X-2020 (1), Paspalum dilatatum – IX-2020 (1), III-2021 (4), Trifolium repens – VI-2021 (1), Veronica persica Poir. (Scrophulariaceae) – VIII-2021 (1). São Joaquim: GALA – Holcus lanatus – X-2020 (1), Lolium multiflorum – X-2020 (7), Plantago australis – X-2020 (1), VIII-2021 (2). FUJI – Lolium multiflorum – III-2021 (1), Plantago australis – I-2021 (1), III-2021 (1), V-2021 (2), VIII-2021 (1).
Ologamasus tuberculatus
Bizarro & Rode, 2023BIZARRO, G.L., RODE, P.A., SCHUSSLER, M., COSTA, T.D. & FERLA, N.J. (2023). Two new species of the genus Ologamasus (Ologamasidae) from apple orchards in southern Brazil. Zootaxa 5375(4), 495–514. https://doi.org/10.11646/zootaxa.5375.4.3.
https://doi.org/10.11646/zootaxa.5375.4....
Ologamasus tuberculatusBizarro & Rode, 2023BIZARRO, G.L., RODE, P.A., SCHUSSLER, M., COSTA, T.D. & FERLA, N.J. (2023). Two new species of the genus Ologamasus (Ologamasidae) from apple orchards in southern Brazil. Zootaxa 5375(4), 495–514. https://doi.org/10.11646/zootaxa.5375.4.3.
https://doi.org/10.11646/zootaxa.5375.4....
: 495–514.
Antônio Prado: EVA – Plantago australis – III-2021 (2), IV-2021 (3). FUJI – Elephantopus mollis – III-2021 (3), Lolium multiflorum – VI-2021 (1), Talinum paniculatum (Jacq.) Gaertn. (Talinaceae) – VI-2021 (1). GALA – Lolium multiflorum – III-2021 (2), Plantago australis – VII-2021 (4), VIII-2021 (1), Paspalum urvillei – III-2021 (1), Richardia brasiliensis Gomes (Rubiaceae) – IV-2021 (1). Muitos Capões: FUJI – Lolium multiflorum – X-2020 (1). GALA – Lolium multiflorum – X-2020 (1), Plantago australis – V-2021 (1).
Pachylaelapidae
Zygoseius sp.
Antônio Prado: FUJI – Plantago australis – III-2021 (2).
Zygoseius furciger (Berlese, 1916BERLESE, A. (1916). Centuria prima di Acari nuovi. Redia 12, 19–67.)
Lasioseius (Zygoseius) furcigerBerlese, 1916BERLESE, A. (1916). Centuria prima di Acari nuovi. Redia 12, 19–67.: 12: 19–67.
Antônio Prado: FUJI – Cantinoa mutabilis – VII-2021 (2). GALA – Richardia brasiliensis – IV-2021 (2). São Joaquim: FUJI – Raphanus sativus L. (Brassicaceae) – IX-2020 (1). GALA – Holcus lanatus – XII-2020 (1), Plantago australis – II-2021 (1), III-2021 (1). Muitos Capões: FUJI – Lolium multiflorum – VIII-2021 (1), Plantago australis – VIII-2021 (4).
Parasitidae
Eugamasus sp.1
Antônio Prado: GALA – Hypochaeris sp. – IX-2020 (2), Paspalum pumilum – IX-2020 (1). Muitos Capões: FUJI – Trifolium repens – III-2021 (1). São Joaquim: FUJI – Plantago australis – XII-2020 (1), III-2021 (1). GALA – Plantago australis – III-2021 (1).
Eugamasus sp.2
Antônio Prado: EVA – Adiantopsis chlorophylla – VII-2021 (1). FUJI – Paspalum dilatatum – XI-2020 (1).
Phytoseiidae
Amblyseius chiapensis
De Leon, 1961DE LEON, D. (1961). Eight new Amblyseius from Mexico with collection notes on two other species (Acarina: Phytoseiidae). The Florida Entomologist 44(2), 85–91. https://doi.org/10.2307/3492318.
https://doi.org/10.2307/3492318...
Amblyseius chiapensisDe Leon, 1961DE LEON, D. (1961). Eight new Amblyseius from Mexico with collection notes on two other species (Acarina: Phytoseiidae). The Florida Entomologist 44(2), 85–91. https://doi.org/10.2307/3492318.
https://doi.org/10.2307/3492318...
: 85.
Antônio Prado: EVA – Malus domestica – III-2021 (1).
Amblyseius nicola
Chant & Hansell, 1971CHANT, D.A. & HANSELL, R.I.C. (1971). The genus Amblyseius (Acarina: Phytoseiidae) in Canada and Alaska. Canadian Journal of Zoology 49(5), 703–758. https://doi.org/10.1139/z71-110.
https://doi.org/10.1139/z71-110...
Amblyseius nicolaChant & Hansell, 1971CHANT, D.A. & HANSELL, R.I.C. (1971). The genus Amblyseius (Acarina: Phytoseiidae) in Canada and Alaska. Canadian Journal of Zoology 49(5), 703–758. https://doi.org/10.1139/z71-110.
https://doi.org/10.1139/z71-110...
: 714.
São Joaquim: FUJI – Acaena eupatoria – IX-2020 (1), Lolium multiflorum – I-2021 (3), Plantago australis – I-2021 (12). GALA – Acaena eupatoria – VIII-2021 (1), Lolium multiflorum – X-2020 (6), Plantago australis – I-2021 (16), II-2021 (1), IV-2021 (3).
Amblyseius vitis
Ferla & Silva, 2009FERLA, N.J. & SILVA, G.L. (2009). A new species of Amblyseius Berlese (Acari, Phytoseiidae) from the state of Rio Grande do Sul, Brazil. Revista Brasileira de Entomologia 53, 509–510. https://doi.org/10.1590/S0085-56262009000400003.
https://doi.org/10.1590/S0085-5626200900...
Amblyseius vitisFerla & Silva, 2009FERLA, N.J. & SILVA, G.L. (2009). A new species of Amblyseius Berlese (Acari, Phytoseiidae) from the state of Rio Grande do Sul, Brazil. Revista Brasileira de Entomologia 53, 509–510. https://doi.org/10.1590/S0085-56262009000400003.
https://doi.org/10.1590/S0085-5626200900...
: 509–10.
Antônio Prado: EVA – Taraxacum officinale F. H. Wigg. (Asteraceae) – IX-2020 (2). FUJI – Elephantopus mollis – XII-2020 (1), Paspalum dilatatum – XI-2020 (1). GALA – Lolium multiflorum – X-2020 (1).
Arrenoseius gaucho
Ferla, Silva & Moraes, 2010FERLA, N.J., DA SILVA, G.L. & DE MORAES, G.J. (2010). Description of a new species of Arrenoseius Wainstein (Acari: Phytoseiidae) from Brazil and a redescription of a similar species from Argentina. International Journal of Acarology 36(1), 15–19. https://doi.org/10.1080/01647950903490095.
https://doi.org/10.1080/0164795090349009...
Arrenoseius gauchoFerla, Silva & Moraes, 2010FERLA, N.J., DA SILVA, G.L. & DE MORAES, G.J. (2010). Description of a new species of Arrenoseius Wainstein (Acari: Phytoseiidae) from Brazil and a redescription of a similar species from Argentina. International Journal of Acarology 36(1), 15–19. https://doi.org/10.1080/01647950903490095.
https://doi.org/10.1080/0164795090349009...
: 15.
Antônio Prado: EVA – Adiantopsis chlorophylla – VII-2021 (6), Elephantopus mollis – I-2021 (2), II-2021 (1), III-2021 (8), IV-2021 (1), Plantago australis – IV-2021 (38), VIII-2021 (4), Vernonanthura tweediana – XII-2020 (2). FUJI – Elephantopus mollis – XII-2020 (11), II-2021 (1), III-2021 (6), Lolium multiflorum – XII-2020 (4), VI-2021 (4), Plantago australis – III-2021 (2), IV-2021 (3), Paspalum urvillei – I-2021 (1), Talinum paniculatum – VI-2021 (2), Vernonanthura sp. – XI-2020 (1). GALA – Elephantopus mollis – V-2021 (1), Hypochaeris sp. – XII-2020 (2), Lolium multiflorum – X-2020 (1), Plantago australis – VII-2021 (5), VIII-2021 (5), Paspalum urvillei – I-2021 (1), Veronica persica – VIII-2021 (1). São Joaquim: FUJI – Bromus unioloides H.B.K. (Poaceae) – X-2020 (2), Holcus lanatus – XII-2020 (1), Plantago australis – I-2021 (3), II-2021 (2), III-2021 (6), V-2021 (6), VI-2021 (2). GALA – Acaena eupatoria - XI-2020 (2), Holcus lanatus – XI-2020 (1), II-2021 (1), Lolium multiflorum – IX-2020 (1), I-2021 (2), III-2021 (2), Plantago australis – XII-2020 (1), I-2021 (3), II-2021 (2), III-2021 (2), Raphanus sativus – IX-2020 (6). Muitos Capões: FUJI – Vernonanthura tweediana – IV-2021 (2).
Arrenoseius sp.
Antônio Prado: EVA – Adiantopsis chlorophylla – VII-2021 (2), Malus domestica – IV-2021 (1), Vernonanthura tweediana – V-2021 (1). FUJI – Elephantopus mollis – III-2021 (1), Lolium multiflorum – VI-2021 (2), Plantago australis – III-2021 (2), IV-2021 (1), Steinchisma hians – V-2021 (1).
Euseius inouei (Ehara & Moraes, 1998EHARA, S. & DE MORAES, G.J. (1998). A new species of Amblyseius (Euseius)(Acari: Phytoseiidae) from citrus in Uruguay. Entomological Science 1(1), 59–61.)
Amblyseius (Euseius) inoueiEhara & Moraes, 1998EHARA, S. & DE MORAES, G.J. (1998). A new species of Amblyseius (Euseius)(Acari: Phytoseiidae) from citrus in Uruguay. Entomological Science 1(1), 59–61.: 59.
Antônio Prado: EVA – Chromolaena laevigata (Lam.) R. M. King & H. Rob. (Asteraceae) – III-2021 (3), Malus domestica – XI-2020 (6), XII-2020 (1), II-2021 (4), III-2021 (13), IV-2021 (12), V-2021 (1). FUJI – Malus domestica - XI-2020 (1). GALA - Malus domestica – XI-2020 (1).
Euseius mesembrinus (Dean, 1957DEAN, H.A. (1957). Predators of Oligonychus pratensis (Banks), Tetranychidae. Annals of the Entomological Society of America 50(2), 164–165. https://doi.org/10.1093/aesa/50.2.164.
https://doi.org/10.1093/aesa/50.2.164...
)
Typhlodromus mesembrinusDean, 1957DEAN, H.A. (1957). Predators of Oligonychus pratensis (Banks), Tetranychidae. Annals of the Entomological Society of America 50(2), 164–165. https://doi.org/10.1093/aesa/50.2.164.
https://doi.org/10.1093/aesa/50.2.164...
: 165.
Antônio Prado: EVA – Chromolaena laevigata – I-2021 (1), II-2021 (1), III-2021 (28), Malus domestica – XII-2020 (3), I-2021 (14), II-2021 (3), III-2021 (4), IV-2021 (23), V-2021 (2).
Galendromus (Galendromus) annectens (De Leon, 1958DE LEON, D. (1958). Four new Typhlodromus from southern Florida (Acarina: Phytoseiidae). The Florida Entomologist 41(2), 73–76. https://doi.org/10.2307/3492363.
https://doi.org/10.2307/3492363...
)
Typhlodromus annectensDe Leon, 1958DE LEON, D. (1958). Four new Typhlodromus from southern Florida (Acarina: Phytoseiidae). The Florida Entomologist 41(2), 73–76. https://doi.org/10.2307/3492363.
https://doi.org/10.2307/3492363...
: 75.
Antônio Prado: EVA – Malus domestica – I-2021 (1). GALA – Malus domestica – II-2021 (4), III-2021 (1), IV-2021 (4).
Metaseiulus (Metaseiulus) eiko (El-Banhawy, 1984EL-BANHAWY, E.M. (1984). Description of some phytoseiid mites from Brazil (Acarina: Phytoseiidae). Acarologia 25(2), 125–144.)
Typhlodromus eikoEl-Banhawy, 1984EL-BANHAWY, E.M. (1984). Description of some phytoseiid mites from Brazil (Acarina: Phytoseiidae). Acarologia 25(2), 125–144.: 138.
Antônio Prado: EVA – Malus domestica – XII-2020 (3), I-2021 (1), II-2021 (4), V-2021 (3), Vernonanthura tweediana – III-2021 (4). FUJI – Malus domestica – XII-2020 (1), I-2021 (1), III-2021 (2), IV-2021 (2). GALA – Malus domestica – I-2021 (4), II-2021 (10), III-2021 (1), VI-2021 (2), VIII-2021 (1).
Neoseiulus sp.
São Joaquim: GALA – Plantago australis – VIII-2021 (1).
Neoseiulus californicus (McGregor, 1954MCGREGOR, E.A. (1954). Two new mites in the genus Typhlodromus (Acarina, Phytoseiidae). Bulletin, Southern California Academy of Sciences 53(2), 89–92. https://doi.org/10.3160/0038-3872-53.2.89
https://doi.org/10.3160/0038-3872-53.2.8...
)
Neoseiulus californicusMcGregor, 1954MCGREGOR, E.A. (1954). Two new mites in the genus Typhlodromus (Acarina, Phytoseiidae). Bulletin, Southern California Academy of Sciences 53(2), 89–92. https://doi.org/10.3160/0038-3872-53.2.89
https://doi.org/10.3160/0038-3872-53.2.8...
: 89.
Antônio Prado: EVA – Malus domestica – X-2020 (1), XII-2020 (3), II-2021 (3), FUJI – Malus domestica – X-2020 (1), I-2021 (3), III-2021 (1). GALA – Malus domestica – XII-2020 (1), I-2021 (7), II-2021 (3). Muitos Capões: FUJI – Lolium multiflorum – XI-2020 (1), Malus domestica – XII-2020 (6), I-2021 (27), II-2021 (31), III-2021 (66), IV-2021 (14), V-2021 (7), VI-2021 (10), Plantago australis – II-2021 (1), VI-2021 (1), V-2021 (1), Vernonanthura tweediana – V-2021 (16). GALA – Bidens pilosa – V-2021 (1), Malus domestica – XI-2020 (2), XII-2020 (8), I-2021 (85), II-2021 (37), III-2021 (36), IV-2021 (10), V-2021 (8), VI-2021 (7), Vernonanthura tweediana – IX-2020 (1), XII-2020 (12), V-2021 (1). São Joaquim: FUJI – Lolium multiflorum – III-2021 (6), Malus domestica – I-2021 (11), II-2021 (5), III-2021 (32), IV-2021 (7), V-2021 (8), Plantago australis – I-2021 (1), IV-2021 (4), V-2021 (1), Verbena litoralis – IV-2021 (1). GALA – Acaena eupatoria – IV-2021 (2), V-2021 (1), Holcus lanatus – II-2021 (1), Lolium multiflorum – III-2021 (21), V-2021 (1), Malus domestica – XII-2020 (1), II-2021 (18), III-2021 (47), IV-2021 (26), V-2021 (14), Plantago australis – IV-2021 (3), V-2021 (1).
Neoseiulus fallacis (Garman, 1948GARMAN, P. (1948). Mite species from apple trees in Connecticut. Connecticut Agricultural Experiment Station, Bulletin 520, 1–27.)
Iphidulus fallacisGarman, 1948GARMAN, P. (1948). Mite species from apple trees in Connecticut. Connecticut Agricultural Experiment Station, Bulletin 520, 1–27.: 13.
Antônio Prado: FUJI – Malus domestica – X-2020 (1).
Neoseiulus mumai (Denmark, 1965DENMARK, H.A. (1965). Four new Phytoseiidae (Acari: Mesostigmata) from Florida. The Florida Entomologist 48(2), 89–95. https://doi.org/10.2307/3493097.
https://doi.org/10.2307/3493097...
)
Cydnodromus mumaiDenmark, 1965DENMARK, H.A. (1965). Four new Phytoseiidae (Acari: Mesostigmata) from Florida. The Florida Entomologist 48(2), 89–95. https://doi.org/10.2307/3493097.
https://doi.org/10.2307/3493097...
: 91.
Antônio Prado: FUJI – Lolium multiflorum – XI-2020 (1).
Neoseiulus tunus (De Leon, 1967DE LEON, D. (1967). Some mites of the Caribbean Area. Part I. Acarina on plants in Trinidad, West Indies. Kansas.)
Typhlodromips tunusDe Leon, 1967DE LEON, D. (1967). Some mites of the Caribbean Area. Part I. Acarina on plants in Trinidad, West Indies. Kansas.: 29.
Antônio Prado: EVA – Baccharis anomala DC. (Asteraceae) – I-2021 (2), Malus domestica – I-2021 (1), II-2021 (2), III-2021 (3), IV-2021 (4). FUJI – Malus domestica – VI-2021 (1).
Phytoseius sp.
São Joaquim: GALA – Plantago australis – II-2021 (1).
Proprioseiopsis ovatus (Garman, 1958GARMAN, P. (1958). New species belonging to the genera Amblyseius and Amblyseiopsis with keys to Amblyseius, Amblyseiopsis, and Phytoseiulus. Annals of the Entomological society of America 51(1), 69–79. https://doi.org/10.1093/aesa/51.1.69
https://doi.org/10.1093/aesa/51.1.69...
)
Amblyseius ovatusGarman, 1958GARMAN, P. (1958). New species belonging to the genera Amblyseius and Amblyseiopsis with keys to Amblyseius, Amblyseiopsis, and Phytoseiulus. Annals of the Entomological society of America 51(1), 69–79. https://doi.org/10.1093/aesa/51.1.69
https://doi.org/10.1093/aesa/51.1.69...
: 78.
Antônio Prado: EVA – Sporobolus indicus (L.) R. Br. (Poaceae) – IV-2021 (1). FUJI – Veronica persica – VIII-2021 (1). Muitos Capões: FUJI – Malus domestica – XI-2020 (1). GALA – Malus domestica – I-2021 (1), Plantago australis – XII-2020 (1), V-2021 (2), Vernonanthura tweediana – XI-2020 (1), V-2021 (1). São Joaquim: FUJI – Holcus lanatus – II-2021 (3), Plantago australis – I-2021 (9), II-2021 (1). GALA – Acaena eupatoria – IV-2021 (1), V-2021 (1), Lolium multiflorum – III-2021 (1), Plantago australis – I-2021 (3).
Uropodina
Antônio Prado: GALA – Lolium multiflorum – X-2020 (1). Muitos Capões: GALA – Urochloa plantaginea – I-2021 (1).
Veigaiidae
Antônio Prado: GALA – Paspalum pumilum – IX-2020 (1).
Trombidiformes
Alycidae
Amphialycus (Amphialycus) pentophthalmusZachvatkin, 1949ZACHVATKIN, A.A. (1949). New representatives of segmented mites (Acarina, Pachygnathidae). – Entomol. oboz. 30: 292–297.
Amphialycus pentophthalmusZachvatkin, 1949ZACHVATKIN, A.A. (1949). New representatives of segmented mites (Acarina, Pachygnathidae). – Entomol. oboz. 30: 292–297.: 30: 292–97
Antônio Prado: FUJI – Paspalum urvillei – I-2021 (1).
Laminamichaelia sp.
Antônio Prado: FUJI – Lolium multiflorum – XII-2020 (1).
Cunaxidae
Armascirus sp.
Antônio Prado: GALA – Elephantopus mollis – V-2021 (1), Plantago australis – VII-2021 (1).
Cunaxoides lajeadensisWurlitzer & Monjarás-Barrera, 2020WURLITZER, W.B., MONJARÁS-BARRERA, J.I., JOHANN, L., FERLA, N.J. & SILVA, G.L. (2020). New species of predatory mites (Acari: Prostigmata: Cunaxidae) for southern Brazil. Zootaxa 4718(3), 401–412. https://doi.org/https://doi.org/10.11646/zootaxa.4718.3.8
https://doi.org/10.11646/zootaxa.4718.3....
.
Cunaxoides lajeadensisWurlitzer et al. 2020WURLITZER, W.B., MONJARÁS-BARRERA, J.I., JOHANN, L., FERLA, N.J. & SILVA, G.L. (2020). New species of predatory mites (Acari: Prostigmata: Cunaxidae) for southern Brazil. Zootaxa 4718(3), 401–412. https://doi.org/https://doi.org/10.11646/zootaxa.4718.3.8
https://doi.org/10.11646/zootaxa.4718.3....
: 402–07.
Antônio Prado: EVA – Baccharis anomala – I-2021 (1), Vernonanthura tweediana – X-2020 (1), III-2021 (4), IV-2021 (1).
Dactyloscirus sp.
Antônio Prado: FUJI – Elephantopus mollis – III-2021 (1).
Neocunaxoides ovatus
Lin, 2003LIN, J., ZHANG, Y. & JI, J. (2003). A new species of Neocunaxoides from Fujian, China (Acari: Cunaxidae). Systematic and Applied Acarology 8(1), 101–106. https://doi.org/10.11158/saa.8.1.13
https://doi.org/10.11158/saa.8.1.13...
Neocunaxoides ovatusLin, Zhang & Ji, 2003LIN, J., ZHANG, Y. & JI, J. (2003). A new species of Neocunaxoides from Fujian, China (Acari: Cunaxidae). Systematic and Applied Acarology 8(1), 101–106. https://doi.org/10.11158/saa.8.1.13
https://doi.org/10.11158/saa.8.1.13...
: 103–05.
Antônio Prado: EVA – Adiantopsis chlorophylla – VII-2021 (1). FUJI – Elephantopus mollis – II-2021 (1), III-2021 (2), Plantago australis – V-2021 (3). GALA – Elephantopus mollis – V-2021 (1), Plantago australis – VII-2021 (2). Muitos Capões: FUJI – Bidens pilosa – V-2021 (1). GALA – Vernonanthura tweediana – V-2021 (2).
Pulaeus mormacensis
Wurlitzer & Silva, 2021WURLITZER, W.B., BIZARRO, G.L., JOHANN, L., FERLA, N.J. & DA SILVA, G.L. (2021). A new species of Pulaeus and the first report of Coleoscirus tuberculatus for the fauna of Brazil (Acari: Cunaxidae). Systematic and Applied Acarology 26(7), 1254–1263. https://doi.org/10.11158/saa.26.7.6
https://doi.org/10.11158/saa.26.7.6...
Pulaeus mormacensisWurlitzer et al. 2021WURLITZER, W.B., BIZARRO, G.L., JOHANN, L., FERLA, N.J. & DA SILVA, G.L. (2021). A new species of Pulaeus and the first report of Coleoscirus tuberculatus for the fauna of Brazil (Acari: Cunaxidae). Systematic and Applied Acarology 26(7), 1254–1263. https://doi.org/10.11158/saa.26.7.6
https://doi.org/10.11158/saa.26.7.6...
: 1255–60.
Antônio Prado: FUJI – Plantago australis – IV-2021 (1). Muitos Capões: GALA – Plantago australis – V-2021 (1).
Rubroscirus grilloi
Wurlitzer & Ferla, 2020WURLITZER, W.B., JOHANN, L., FERLA, N.J. & DA SILVA, G.L. (2020). New species of the genera Lupaeus and Rubroscirus (Acari: Cunaxidae) from Southern Brazil. Systematic and Applied Acarology 25(12), 2224–2234. https://doi.org/10.11158/saa.25.12.6
https://doi.org/10.11158/saa.25.12.6...
Rubroscirus grilloi Wurlitzeret al. 2020: 2228–33.
Muitos Capões: GALA – Plantago australis – XII-2020 (1).
Scutopalus tomentosus
Rocha, Skvarla & Ferla, 2013ROCHA, M.D.S., SKVARLA, M.J. & FERLA, N.J. (2013). A new species of Scutopalus (Acari: Cunaxidae: Cunaxoidinae) from Rio Grande do Sul State, Brazil with a key to world species. Zootaxa 3734(1), 38–44. https://doi.org/10.11646/zootaxa.3734.1.4
https://doi.org/10.11646/zootaxa.3734.1....
Scutopalus tomentosusRocha et al. 2013ROCHA, M.D.S., SKVARLA, M.J. & FERLA, N.J. (2013). A new species of Scutopalus (Acari: Cunaxidae: Cunaxoidinae) from Rio Grande do Sul State, Brazil with a key to world species. Zootaxa 3734(1), 38–44. https://doi.org/10.11646/zootaxa.3734.1.4
https://doi.org/10.11646/zootaxa.3734.1....
: 39–42.
Antônio Prado: EVA – Vernonanthura tweediana V-2021 (1). FUJI – Talinum paniculatum – VI-2021 (1). GALA – Elephantopus mollis – V-2021 (1).
Eriophyidae
Aculus schlechtendali (Nalepa, 1890NALEPA, A. (1890). Neue Phytoptiden. Anz. kais. Akad. Wiss., Math.-Natur Kl., Wien. 27(20) 212–213.)
Phyllocoptes schlechtendaliNalepa, 1890NALEPA, A. (1890). Neue Phytoptiden. Anz. kais. Akad. Wiss., Math.-Natur Kl., Wien. 27(20) 212–213.: 99: 40–69.
Antônio Prado: EVA – Malus domestica – X-2020 (13), XI-2020 (457), XII-2020 (898), I-2021 (2), VIII-2021 (1). FUJI – Malus domestica – XII-2020 (46), I-2021 (36), II-2021 (3), VIII-2021 (1). GALA – Malus domestica – XII-2020 (17), I-2021 (206), II-2021 (100), VI-2021 (56). Muitos Capões: FUJI – Malus domestica – X-2020 (24), XI-2020 (12), XII-2020 (154), I-2021 (4), II-2021 (1), IV-2021 (24), VIII-2021 (5). GALA – Malus domestica – X-2020 (124), XI-2020 (424), XII-2020 (656), I-2021 (1), VIII-2021 (2). São Joaquim: FUJI – Malus domestica – I-2021 (1), III-2021 (4). GALA – Malus domestica – I-2021 (56), VI-2021 (1), VIII-2021 (1).
Erythraeidae
Leptus sp.
Antônio Prado: FUJI – Plantago australis – IV-2021 (2).
Eupodidae
Benoinyssus sp.1
Antônio Prado: EVA – Elephantopus mollis – III-2021 (3). FUJI – III-2021 (4), Plantago australis – III-2021 (1), Richardia brasiliensis – IV-2021 (1). GALA – Euphorbia heterophylla – III-2021 (2), Plantago australis – VII-2021 (1), VIII-2021 (1). Muitos Capões: FUJI – Euphorbia heterophylla – V-2021 (1), Plantago australis – VIII-2021 (1), Trifolium repens – IV-2021 (2). GALA – Vernonanthura tweediana – V-2021 (2). São Joaquim: GALA – Plantago australis – XI-2020 (1), IV-2021 (1).
Benoinyssus sp.2
Antônio Prado: GALA – Malus domestica – IV-2021 (1), VIII-2021 (1), Paspalum urvillei – III-2021 (1).
Eupodes sp.
Muitos Capões: GALA – Bidens pilosa – VI-2021 (1), Plantago australis – V-2021 (1).
Iolinidae
Pseudopronematulus sp.
Antônio Prado: EVA – Baccharis anomala – I-2021 (8), Chromolaena laevigata – III-2021 (1), Malus domestica – XI-2020 (2), XII-2020 (8), I-2021 (12), II-2021 (10), III-2021 (5), IV-2021 (3), Paspalum urvillei – II-2021 (1), Vernonanthura tweediana – III-2021 (3), IV-2021 (5). FUJI – Malus domestica – XI-2020 (3), IV-2021 (1), Steinchisma hians – V-2021 (2), Talinum paniculatum – VI-2021 (1). GALA – Euphorbia heterophylla – III-2021 (1), Malus domestica – XI-2020 (2), XII-2020 (1), I-2021 (1), II-2021 (2), III-2021 (2) – VI-2021 (1). Muitos Capões: FUJI – Vernonanthura tweediana – IV-2021 (1). GALA – Bidens pilosa – IV-2021 (4), Euphorbia heterophylla – IV-2021 (10), Malus domestica – I-2021 (1), III-2021 (1).
Scutacaridae
Scutacarus sp.
Antônio Prado: EVA – Adiantopsis chlorophylla – VII-2021 (1). São Joaquim: FUJI – Plantago australis – IV-2021 (1).
Stigmaeidae
Agistemus brasiliensis
Matioli, Ueckermann & Oliveira, 2002MATIOLI, A.L., UECKERMANN, E.A. & DE OLIVEIRA, C.D. (2002). Some stigmaeid and eupalopsellid mites from citrus orchards in Brazil (Acari: Stigmaeidae and Eupalopsellidae). International Journal of Acarology 28(2), 99–120. https://doi.org/10.1080/01647950208684287
https://doi.org/10.1080/0164795020868428...
Agistemus brasiliensisMatioli, Ueckermann & Oliveira, 2002MATIOLI, A.L., UECKERMANN, E.A. & DE OLIVEIRA, C.D. (2002). Some stigmaeid and eupalopsellid mites from citrus orchards in Brazil (Acari: Stigmaeidae and Eupalopsellidae). International Journal of Acarology 28(2), 99–120. https://doi.org/10.1080/01647950208684287
https://doi.org/10.1080/0164795020868428...
: 106.
Antônio Prado: EVA – Baccharis anomala – I-2021 (1), Chromolaena laevigata – I-2021 (1), III-2021 (3), Malus domestica – XI-2020 (3), XII-2020 (10), I-2021 (69), II-2021 (40), IV-2021 (50), V-2021 (3), Vernonanthura tweediana – III-2021 (29), IV-2021 (31), V-2021 (24). FUJI – Malus domestica – XI-2020 (1), XII-2020 (1), I-2021 (2), II-2021 (4), IV-2021 (2). GALA – Elephantopus mollis – V-2021 (1), Malus domestica – XII-2020 (1), IV-2021 (2), VI-2021 (12). Muitos Capões: FUJI – Bidens pilosa – IV-2021 (1), Malus domestica – II-2021 (1), IV-2021 (1), V-2021 (1), VI-2021 (10), Plantago australis – VI-2021 (17), Vernonanthura tweediana – IV-2021 (7). GALA – Bidens pilosa – IV-2021 (1), Malus domestica – II-2021 (1), III-2021 (3), IV-2021 (1), V-2021 (2), VI-2021 (17). São Joaquim: GALA – Malus domestica – III-2021 (1).
Agistemus floridanus Gonzalez, 1965GONZALEZ, R.H. (1965). A taxonomic study of the genera Mediolata, Zetzellia and Agistemus (Acari: Stigmaeidae). Berkeley and Los Angeles: University of California Publications in Entomology 41, 64 pp.
Agistemus floridanusGonzalez, 1965GONZALEZ, R.H. (1965). A taxonomic study of the genera Mediolata, Zetzellia and Agistemus (Acari: Stigmaeidae). Berkeley and Los Angeles: University of California Publications in Entomology 41, 64 pp.: 42.
Antônio Prado: FUJI – Malus domestica – VI-2021 (3). GALA – Malus domestica – II-2021 (4). São Joaquim: FUJI – Malus domestica – I-2021 (1). GALA – Malus domestica – II-2021 (1).
Agistemus riograndensis
Johann & Ferla, 2013JOHANN, L., CARVALHO, G.S., MAJOLO, F. & FERLA, N.J. (2013). Stigmaeid mites (Acari: Stigmaeidae) from vineyards in the state of Rio Grande do Sul, Brazil. Zootaxa 3701(2), 238–256. https://doi.org/10.11646/zootaxa.3701.2.6
https://doi.org/10.11646/zootaxa.3701.2....
Agistemus riograndensisJohann et al. 2013JOHANN, L., CARVALHO, G.S., MAJOLO, F. & FERLA, N.J. (2013). Stigmaeid mites (Acari: Stigmaeidae) from vineyards in the state of Rio Grande do Sul, Brazil. Zootaxa 3701(2), 238–256. https://doi.org/10.11646/zootaxa.3701.2.6
https://doi.org/10.11646/zootaxa.3701.2....
: 247.
Antônio Prado: EVA – Chromolaena laevigata – II-2021 (2), Elephantopus mollis – IV-2021 (5), Malus domestica – II-2021 (30), III-2021 (123), IV-2021 (49), V-2021 (8). FUJI – Malus domestica – III-2021 (1), IV-2021 (5), V-2021 (1). GALA – Malus domestica – II-2021 (6), III-2021 (5), IV-2021 (6), V-2021 (10). Muitos Capões: FUJI – Malus domestica - III-2021 (2), V-2021 (3). GALA – Euphorbia heterophylla – V-2021 (4), Malus domestica – III-2021 (2), IV-2021 (9), Plantago australis – V-2021 (1), Vernonanthura tweediana – V-2021 (6). São Joaquim: FUJI – Malus domestica – III-2021 (3), IV-2021 (4), V-2021 (9). GALA – Malus domestica – III-2021 (4), IV-2021 (15), V-2021 (23), Plantago australis – IV-2021 (1), V-2021 (2).
Agistemus sp.
Antônio Prado: FUJI – Malus domestica – V-2021 (1).
Eustigmaeus segnis (Koch, 1836KOCH, C.L. (1836). Deutschland Crustaceen, Myriapoden und Arachniden. Regensburg, 90 pp.)
Caligonus segnisKoch, 1836KOCH, C.L. (1836). Deutschland Crustaceen, Myriapoden und Arachniden. Regensburg, 90 pp.: 5(10).
São Joaquim: FUJI – Acaena eupatoria – IV-2021 (1), V-2021 (1), Plantago australis – V-2021 (5). GALA – Plantago australis – V-2021 (1), VI-2021 (4). Muitos Capões: GALA – Vernonanthura tweediana – V-2021 (2).
Ledermuelleriopsis punctata Soliman, 1975SOLIMAN, Z.R. (1975). Genus Ledermuelleriopsis Willman from Lattakia, Syria (Acari: Prostigmata) with a description of two new species. Acarologia 17(2), 243–247.
Ledermuelleriopsis punctataSoliman, 1975SOLIMAN, Z.R. (1975). Genus Ledermuelleriopsis Willman from Lattakia, Syria (Acari: Prostigmata) with a description of two new species. Acarologia 17(2), 243–247.: 244.
Muitos Capões: FUJI – Plantago australis – IX-2020 (1).
Tarsonemidae
Daidalotarsonemus esalqi
Rezende, Lofego & Ochoa, 2015REZENDE, J.M., LOFEGO, A.C. & OCHOA, R. (2015). Two new species of Daidalotarsonemus (Acari: Prostigmata: Tarsonemidae) from Brazil. Acarologia 55(4), 435–448. https://doi.org/https://dx.doi.org/10.1051/acarologia/20152183
https://doi.org/10.1051/acarologia/20152...
Daidalotarsonemus esalqiRezende, Lofego & Ochoa, 2015REZENDE, J.M., LOFEGO, A.C. & OCHOA, R. (2015). Two new species of Daidalotarsonemus (Acari: Prostigmata: Tarsonemidae) from Brazil. Acarologia 55(4), 435–448. https://doi.org/https://dx.doi.org/10.1051/acarologia/20152183
https://doi.org/10.1051/acarologia/20152...
: 436–41.
Antônio Prado: EVA – Malus domestica – III-2021 (1). Muitos Capões: GALA – Malus domestica – XI-2020 (1).
Daidalotarsonemus savanicus
Rezende, Lofego & Ochoa, 2015REZENDE, J.M., LOFEGO, A.C. & OCHOA, R. (2015). Two new species of Daidalotarsonemus (Acari: Prostigmata: Tarsonemidae) from Brazil. Acarologia 55(4), 435–448. https://doi.org/https://dx.doi.org/10.1051/acarologia/20152183
https://doi.org/10.1051/acarologia/20152...
Daidalotarsonemus savanicusRezende, Lofego & Ochoa, 2015REZENDE, J.M., LOFEGO, A.C. & OCHOA, R. (2015). Two new species of Daidalotarsonemus (Acari: Prostigmata: Tarsonemidae) from Brazil. Acarologia 55(4), 435–448. https://doi.org/https://dx.doi.org/10.1051/acarologia/20152183
https://doi.org/10.1051/acarologia/20152...
: 441–46.
Antônio Prado: EVA – Chromolaena laevigata – III-2021 (4), Malus domestica – I-2021 (1), III-2021 (2), IV-2021 (6), Vernonanthura tweediana – IV-2021 (1).
Fungitarsonemus sp.
São Joaquim: FUJI – Malus domestica – V-2021 (1).
Polyphagotarsonemus latus (Banks, 1904BANKS, N. (1904). Four new species of injurious mites. Journal of the New York Entomological Society 12(1), 53–56.)
Tarsonemus latusBanks, 1904BANKS, N. (1904). Four new species of injurious mites. Journal of the New York Entomological Society 12(1), 53–56.: 55.
Antônio Prado: EVA – Baccharis anomala – I-2021 (1), Malus domestica – I-2021 (1), II-2021 (16). FUJI – Malus domestica – XII-2020 (62), I-2021 (72), II-2021 (54). GALA – Malus domestica – XII-2020 (2), I-2021 (302), II-2021 (278).
Rhynchotarsonemus sp.
Antônio Prado: EVA – Malus domestica – III-2021 (1).
Tarsonemus confusus Ewing, 1939EWING, H.E. (1939). A revision of the mites of the subfamily Tarsoneminae of North America, the West Indies, and the Hawaiian Islands, 1488-2016-123378.
Tarsonemus confususEwing, 1939EWING, H.E. (1939). A revision of the mites of the subfamily Tarsoneminae of North America, the West Indies, and the Hawaiian Islands, 1488-2016-123378.: 26.
Antônio Prado: EVA – Malus domestica – IV-2021 (5). Muitos Capões: FUJI – Vernonanthura tweediana – IV-2021 (10). São Joaquim: FUJI – Malus domestica – II-2021 (2).
Tarsonemus merus Lin & Zhang, 2002LIN, J. & ZHANG, Z.Q. (2002). Tarsonemidae of the World. Key to genera, geographical distribution, systematic catalogue & annotated bibliography. London: Systematic & Applied Acarology Society, 440.
Tarsonemus merusLin & Zhang, 2002LIN, J. & ZHANG, Z.Q. (2002). Tarsonemidae of the World. Key to genera, geographical distribution, systematic catalogue & annotated bibliography. London: Systematic & Applied Acarology Society, 440.: 248.
Antônio Prado: EVA – Malus domestica – XI-2020 (1), XII-2020 (1), II-2021 (1), III-2021 (10), IV-2021 (3). FUJI – Malus domestica – VIII-2021 (9). GALA – Malus domestica – II-2021 (3), IV-2021 (4), VI-2021 (3), VIII-2021 (7). Muitos Capões: FUJI – Lolium multiflorum – IX-2020 (1), Malus domestica – III-2021 (1), Plantago australis – II-2021 (1), Vernonanthura tweediana – V-2021 (16). GALA – Malus domestica – IX-2020 (2), XI-2020 (1), II-2021 (1), III-2021 (2), VIII-2021 (1), Sida rhombifolia – VIII-2021 (2), Vernonanthura tweediana – XII-2020 (1). São Joaquim: FUJI – Malus domestica – IX-2020 (11), III-2021 (12), V-2021 (1), VI-2021 (10), VII-2021 (8), VIII-2021 (2). GALA – Malus domestica – IX-2020 (3), II-2021 (3), III-2021 (7), IV-2021 (9), V-2021 (3), VI-2021 (17), VII-2021 (7).
Tarsonemus waitei Banks, 1912BANKS, N. (1912). New american mites. Proceedings of the entomological Society of Washington 14, 96–99.
Tarsonemus waiteiBanks, 1912BANKS, N. (1912). New american mites. Proceedings of the entomological Society of Washington 14, 96–99.: 96.
Antônio Prado: EVA – Malus domestica – XI-2020 (3), XII-2020 (25), I-2021 (3), III-2021 (2), IV-2021 (5). FUJI – Malus domestica – IV-2021 (3), VII-2021 (9), VIII-2021 (1). GALA – Adiantopsis chlorophylla – V-2021 (1), Malus domestica – XII-2020 (1), I-2021 (1), II-2021 (5), IV-2021 (2), VII-2021 (4), VIII-2021 (3). Muitos Capões: FUJI – Malus domestica – IX-2020 (1), XI-2020 (2), XII-2020 (3), IV-2021 (4), VII-2021 (1), VIII-2021 (2), Scoparia sp. – IX-2020 (1). GALA – Malus domestica – IX-2020 (1), X-2020 (1), XI-2020 (3), XII-2020 (1), II-2021 (4), VI-2021 (2), VIII-2021 (13). São Joaquim: FUJI – Malus domestica – IX-2020 (2), IV-2021 (3), VIII-2021 (1). GALA – Malus domestica – I-2021 (2), II-2021 (6), III-2021 (2), IV-2021 (3), VII-2021 (3).
Xenotarsonemus sp.1
Muitos Capões: FUJI – Malus domestica – IX-2020 (1), VIII-2021 (12).
Xenotarsonemus sp.2
Antônio Prado: EVA – Vernonanthura tweediana – III-2021 (1). FUJI – Talinum paniculatum – VI-2021 (25). Muitos Capões: FUJI – Bidens pilosa – V-2021 (3), Lolium multiflorum – XI-2020 (1), Plantago australis – IX-2020 (3), VIII-2021 (2), Trifolium pratense L. (Fabaceae) – VI-2021 (5), Vernonanthura tweediana – IV-2021 (18), V-2021 (2). GALA – Plantago australis – V-2021 (43), Vernonanthura tweediana – V-2021 (17). São Joaquim: FUJI – Plantago australis – II-2021 (2), IV-2021 (2), Verbena litoralis – IV-2021 (1), GALA – Acaena eupatoria – IV-2021 (1), Lolium multiflorum – III-2021 (1).
Xenotarsonemus sp.3
Antônio Prado: EVA – Elephantopus mollis – IV-2021 (1). Muitos Capões: GALA – Plantago australis – V-2021 (15), Vernonanthura tweediana – V-2021 (33).
Xenotarsonemus sp.4
Antônio Prado: EVA – Elephantopus mollis – IV-2021 (1), Plantago australis – IV-2021 (26), Vernonanthura tweediana – IV-2021 (2). GALA – Plantago australis – VII-2021 (2). São Joaquim: FUJI – Acaena eupatoria – VIII-2021 (1), Plantago australis – I-2021 (1), II-2021 (1), VI-2021 (7), Verbena litoralis – VII-2021 (2). GALA – Plantago australis – IV-2021 (2), V-2021 (1).
Tenuipalpidae
Brevipalpus sp.1
Antônio Prado: EVA – Malus domestica – I-2021 (1), III-2021 (2), IV-2021 (1). FUJI – Malus domestica – III-2021 (7), V-2021 (2). GALA – Malus domestica – XII-2020 (1), I-2021 (1), IV-2021 (4), V-2021 (1), VI-2021 (1). Muitos Capões: FUJI – Malus domestica – III-2021 (1). GALA – Malus domestica – V-2021 (1).
Brevipalpus sp.2
Antônio Prado: EVA – Elephantopus mollis – IV-2021 (1). Muitos Capões: FUJI – Trifolium repens – VI-2021 (2). GALA – Bidens pilosa – IV-2021 (33).
Tenuipalpus sp.
Antônio Prado: EVA – Malus domestica – I-2021 (1).
Tetranychidae
Aponychus mauritianum
Ferla & Ferla, 2020FERLA, J.J., TOLDI, M., WURLITZER, W.B. & FERLA, N.J. (2020). Description of a new species of Aponychus and redescriprion of Tetranychus armipenis (Tetranychidae). Systematic and Applied Acarology 25(6), 1064–1074. https://doi.org/10.11158/saa.25.6.9.
https://doi.org/10.11158/saa.25.6.9...
Aponychus mauritianumFerla et al. 2020FERLA, J.J., TOLDI, M., WURLITZER, W.B. & FERLA, N.J. (2020). Description of a new species of Aponychus and redescriprion of Tetranychus armipenis (Tetranychidae). Systematic and Applied Acarology 25(6), 1064–1074. https://doi.org/10.11158/saa.25.6.9.
https://doi.org/10.11158/saa.25.6.9...
: 1069–73.
Muitos Capões: FUJI – Plantago australis – VI-2021 (9).
Mononychellus planki (McGregor, 1950MCGREGOR, E.A. (1950). Mites of the family Tetranychidae. The American Midland Naturalist 44(2), 257–420. https://doi.org/10.2307/2421963
https://doi.org/10.2307/2421963...
)
Tetranychus plankiMcGregor, 1950MCGREGOR, E.A. (1950). Mites of the family Tetranychidae. The American Midland Naturalist 44(2), 257–420. https://doi.org/10.2307/2421963
https://doi.org/10.2307/2421963...
: 300.
Antônio Prado: EVA – Sida rhombifolia – I-2021 (1).
Panonychus ulmi (Koch, 1836KOCH, C.L. (1836). Deutschland Crustaceen, Myriapoden und Arachniden. Regensburg, 90 pp.)
Tetranychus ulmiKoch, 1836KOCH, C.L. (1836). Deutschland Crustaceen, Myriapoden und Arachniden. Regensburg, 90 pp.: 11.
Antônio Prado: EVA – Malus domestica – I-2021 (1). FUJI – Malus domestica – XI-2020 (2), II-2021 (1), III-2021 (8), IV-2021 (4), V-2021 (3), VI-2021 (1). GALA – Malus domestica – III-2021 (8), IV-2021 (11), VI-2021 (2). Muitos Capões: FUJI – Malus domestica – XI-2020 (2), XII-2020 (13), I-2021 (33), II-2021 (10), III-2021 (36), IV-2021 (227), V-2021 (143), VI-2021 (42). GALA – Malus domestica – IX-2020 (2), X-2020 (1), XI-2020 (5), XII-2020 (11), I-2021 (40), II-2021 (58), III-2021 (11), IV-2021 (30), V-2021 (26), VI-2021 (11), Trifolium repens – V-2021 (1). São Joaquim: FUJI – Malus domestica – IX-2020 (1), XI-2020 (4), XII-2020 (5), I-2021 (326), II-2021 (2), III-2021 (1), V-2021 (1), VIII-2021 (5). GALA – Acaena eupatoria – I-2021 (1), Malus domestica – XI-2020 (2), XII-2020 (17), I-2021 (105), II-2021 (2), III-2021 (5), IV-2021 (1), V-2021 (1), VIII-2021 (2).
Tetranychus sp.1
Antônio Prado: EVA – Chromolaena laevigata – II-2021 (6), Elephantopus mollis – IV-2021 (1). GALA – Trifolium pratense – VI-2021 (1). Muitos Capões: FUJI – Bidens pilosa – IV-2021 (2).
Tetranychus urticae Koch, 1836KOCH, C.L. (1836). Deutschland Crustaceen, Myriapoden und Arachniden. Regensburg, 90 pp.
Tetranychus urticaeKoch, 1836KOCH, C.L. (1836). Deutschland Crustaceen, Myriapoden und Arachniden. Regensburg, 90 pp..
Antônio Prado: EVA – Malus domestica – XII-2020 (4), I-2021 (1), III-2021 (1). FUJI – Malus domestica – X-2020 (3), XII-2020 (6), I-2021 (3), II-2021 (1). GALA – Malus domestica – XII-2020 (1). Muitos Capões: GALA – Malus domestica – XII-2020 (1).
Triophtydeidae
Triophtydeus sp.
Antônio Prado: EVA – Malus domestica – I-2021 (1). GALA – Malus domestica – VIII-2021 (1).
Trombidiidae
Antônio Prado: FUJI – Lolium multiflorum – VI-2021 (1).
Tydeidae
Lorryia aberrans (Oudemans, 1932OUDEMANS, A.C. (1932). Acarologische Aanteekeningen CXII. Entomologische Berichten 8, 350–352.)
Tydeus aberransOudemans, 1932OUDEMANS, A.C. (1932). Acarologische Aanteekeningen CXII. Entomologische Berichten 8, 350–352.: 350.
São Joaquim: FUJI – Malus domestica – IX-2020 (2).
Lorrya parvireticuli
Mondin, Nuvoloni & Feres, 2016MONDIN, A.D.S., NUVOLONI, F.M. & FERES, R.J.F. (2016). Four new species of Lorryia (Acari: Tydeidae) associated with Hevea brasiliensis Muell. Arg. (Euphorbiaceae) in Brazil. Zootaxa 4158, 473–490. https://doi.org/10.11646/zootaxa.4158.4.2
https://doi.org/10.11646/zootaxa.4158.4....
Lorrya parvireticuliMondin, Nuvoloni & Feres, 2016MONDIN, A.D.S., NUVOLONI, F.M. & FERES, R.J.F. (2016). Four new species of Lorryia (Acari: Tydeidae) associated with Hevea brasiliensis Muell. Arg. (Euphorbiaceae) in Brazil. Zootaxa 4158, 473–490. https://doi.org/10.11646/zootaxa.4158.4.2
https://doi.org/10.11646/zootaxa.4158.4....
: 475.
São Joaquim: FUJI – Plantago australis – I-2021 (1).
Pretydeus henriandrei Kaźmierski, 1996KAŹMIERSKI, A. (1996). A revision of the subfamilies Pretydeinae and Tydeinae (Acari, Actinedida: Tydeidae). Part II. The subfamily Pretydeinae André, 1979 - new taxa, species, review, key and considerations. Mitteilungen Hamburgisches Zoologisches Museum und Institut 93, 171–198.
Pretydeus henriandreiKaźmierski, 1996KAŹMIERSKI, A. (1996). A revision of the subfamilies Pretydeinae and Tydeinae (Acari, Actinedida: Tydeidae). Part II. The subfamily Pretydeinae André, 1979 - new taxa, species, review, key and considerations. Mitteilungen Hamburgisches Zoologisches Museum und Institut 93, 171–198.: 173.
Antônio Prado: FUJI – Malus domestica – VIII-2021 (1).
Quasitydeus sp.
Antônio Prado: FUJI – Malus domestica – II-2021 (1), III-2021 (1).
Tydeus californicus (Banks, 1904BANKS, N. (1904). Four new species of injurious mites. Journal of the New York Entomological Society 12(1), 53–56.)
Tetranychoides californicusBanks, 1904BANKS, N. (1904). Four new species of injurious mites. Journal of the New York Entomological Society 12(1), 53–56.: 54.
Antônio Prado: EVA – Baccharis anomala – I-2021 (2), Chromolaena laevigata – II-2021 (1), III-2021 (17), Malus domestica – X-2020 (1), XI-2020 (1), I-2021 (23), II-2021 (12), III-2021 (31), IV-2021 (31), V-2021 (5), VII-2021 (1), Plantago australis – IV-2021 (2), Sida rhombifolia – I-2021 (1), Vernonanthura tweediana – X-2020 (1), III-2021 (4). FUJI – Malus domestica – IV-2021 (2), V-2021 (1), VI-2021 (2). GALA – Malus domestica – II-2021 (1), III-2021 (1), V-2021 (3), VI-2021 (2), VIII-2021 (2).
São Joaquim: FUJI – Malus domestica - III-2021 (1), IV-2021 (2), Plantago australis – V-2021 (1). GALA – Malus domestica – IV-2021 (1).
Tydeus manoi
Silva, Rocha & Ferla, 2014SILVA, G.D., CUNHA, U.D., ROCHA, M.D.S., PANOU, E.N. & FERLA, N.J. (2014). Tydeid and triophtydeid mites (Acari: Tydeoidea) associated with grapevine (Vitaceae: Vitis spp.) in Brazil, with the descriptions of species of Prelorryia (André, 1980) and Tydeus Koch, 1835. Zootaxa 3814(4), 495–511. https://doi.org/10.11646/zootaxa.3814.4.3
https://doi.org/10.11646/zootaxa.3814.4....
Tydeus manoiSilva et al. 2014SILVA, G.D., CUNHA, U.D., ROCHA, M.D.S., PANOU, E.N. & FERLA, N.J. (2014). Tydeid and triophtydeid mites (Acari: Tydeoidea) associated with grapevine (Vitaceae: Vitis spp.) in Brazil, with the descriptions of species of Prelorryia (André, 1980) and Tydeus Koch, 1835. Zootaxa 3814(4), 495–511. https://doi.org/10.11646/zootaxa.3814.4.3
https://doi.org/10.11646/zootaxa.3814.4....
: 504–06.
São Joaquim: FUJI – Acaena eupatoria – IX-2020 (1), V-2021 (5), VIII-2021 (2), Plantago australis – VI-2021 (8). GALA – Acaena eupatoria – VI-2021 (5), Plantago australis – VI-2021 (4).
Sarcoptiformes
Acaridae
Tyrophagus putrescentiae (Schrank, 1781SCHRANK, F.V.P. (1781). Enumeratio insectorum Austriae indigenorum. Vindelicorum, 548 pp.)
Acarus putrescentiaeSchrank, 1781SCHRANK, F.V.P. (1781). Enumeratio insectorum Austriae indigenorum. Vindelicorum, 548 pp.: 552.
Antônio Prado: EVA – Malus domestica – IX-2020 (1), X-2020 (1), VII-2021 (5). FUJI – Lolium multiflorum – VI-2021 (1), Malus domestica – IX-2020 (1). Muitos Capões: FUJI – Bidens pilosa - IV-2021 (1), Lolium multiflorum – IX-2020 (1), Malus domestica – IX-2020 (4), XI-2020 (1), Plantago australis – VIII-2021 (1), Trifolium repens – X-2020 (2), IV-2021 (3). GALA – Lolium multiflorum – X-2020 (2), XII-2020 (3), Malus domestica – XI -2020 (1), Vernonanthura tweediana – XII -2020 (1). São Joaquim: FUJI – Lolium multiflorum – III-2021 (6), Plantago australis – I-2021 (1). GALA – Holcus lanatus – X-2020 (1), Lolium multiflorum – III-2021 (2), Malus domestica – VIII-2021 (2), Plantago australis – XI-2020 (1).
Histiostomatidae
Histiostoma sp.
São Joaquim: FUJI – Plantago australis – V-2021 (2).
Oribatida
Antônio Prado: EVA – Adiantopsis chlorophylla – VII-2021 (16), Baccharis anomala – I-2021 (2), Elephantopus mollis – I-2021 (5), II-2021 (2), III-2021 (17), IV-2021 (10), Plantago australis – IV-2021 (8), VIII-2021 (8), Solanum pseudocapsicum – IX-2020 (1), Sida rhombifolia – I-2021 (2), Taraxacum officinale – IX-2020 (2), Vernonanthura tweediana – X-2020 (1), XII-2020 (5). FUJI – Cantinoa mutabilis – VII-2021 (4), Elephantopus mollis – II-2021 (1), III-2021 (18), Lolium multiflorum – X-2020 (4), XI-2020 (1), XII-2020 (10), VI-2021 (14), Plantago australis – III-2021 (7), IV-2021 (6), VI-2021 (2), Paspalum dilatatum – XI-2020 (2), I-2021 (2), Richardia brasiliensis – IV-2021 (3), Steinchisma hians – V-2021 (3), Talinum paniculatum – VI-2021 (43), Urochloa plantaginea – V-2021 (1), Veronica persica – VIII-2021 (1). GALA – Adiantopsis chlorophylla – V-2021 (13), Euphorbia heterophylla – III-2021 (1), Elephantopus mollis – V-2021 (18), Hypochaeris sp. – IX-2020 (1), XII-2020 (1), Lolium multiflorum – IX-2020 (1), X-2020 (10), Plantago australis – VII-2021 (18), VIII-2021 (3), Paspalum dilatatum – III-2021 (2), Trifolium repens – I-2021 (3), Richardia brasiliensis – IV-2021 (3), Urochloa plantaginea – I-2021 (28), Veronica persica – VIII-2021 (2). Muitos Capões: FUJI – Bidens pilosa – V-2021 (1), Euphorbia heterophylla – V-2021 (3), Lolium multiflorum – X-2020 (16), Plantago australis – IX-2020 (2), XII-2020 (1), II-2021 (2), V-2021 (10), VIII-2021 (1), Sonchus oleraceus – I-2021 (1), Trifolium repens – X-2020 (1), IV-2021 (12), VI-2021 (1), VII-2021 (5), Veronica persica – IX-2020 (2), Vernonanthura tweediana – V-2021 (1), IV-2021 (8). GALA – Euphorbia heterophylla – I-2021 (2), IV-2021 (1), V-2021 (1), Lolium multiflorum – X-2020 (3), Plantago australis – X-2020 (2), XII-2020 (1), V-2021 (26), VII-2021 (3), VIII-2021 (3), Paspalum dilatatum – IX-2020 (6), II-2021 (3), V. cracca – VI-2021 (1), Vernonanthura tweediana – II-2021 (1), V-2021 (25). São Joaquim: FUJI – Acaena eupatoria – V-2021 (7), VI-2021 (2), Bromus unioloides – X-2020 (10), Holcus lanatus – X-2020 (9), XII-2020 (1), II-2021 (19), Lolium multiflorum – XI-2020 (1), III-2021 (8), Malus domestica – IX-2020 (9), X-2020 (1), III-2021 (1), IV-2021 (2), VII-2021 (2), Plantago australis – XII-2020 (2), I-2021 (4), II-2021 (10), III-2021 (12), IV-2021 (1), V-2021 (20), VIII-2021 (2), Raphanus sativus – IX-2020 (1). GALA – Acaena eupatoria – IX-2020 (1), XI-2020 (1), IV-2021 (1), V-2021 (2), Holcus lanatus – X-2020 (7), XII-2020 (7), II-2021 (19), Lolium multiflorum – IX-2020 (1), X-2020 (5), III-2021 (9), Malus domestica – IX-2020 (1), VI-2021 (3), VII-2021 (5), VIII-2021 (1), Plantago australis – XI-2020 (9), XII-2020 (1), II-2021 (12), III-2021 (11), IV-2021 (3), V-2021 (5), VII-2021 (3), VIII-2021 (1), Trifolium repens – X-2020 (1), XII-2020 (1).
Winterschmitiidae
Czenskinspia transversostriata (Oudemans, 1931OUDEMANS, A.C. (1931). Acarologische Aanteekeningen CVII. Entomologische Berichten 8, 221–236.)
Donndorffia transversostriataOudemans, 1931OUDEMANS, A.C. (1931). Acarologische Aanteekeningen CVII. Entomologische Berichten 8, 221–236.: 203.
Antônio Prado: EVA – Chromolaena laevigata – III-2021 (1), Malus domestica – IV-2021 (3), Vernonanthura tweediana – III-2021 (4), IV-2021 (3). GALA – Malus domestica – VI-2021 (1). Muitos Capões: FUJI – Plantago australis – II-2021 (1). GALA – Vernonanthura tweediana – V-2021 (1). São Joaquim: FUJI – Malus domestica – III-2021 (6), V-2021 (2). GALA – Malus domestica – IV-2021 (1), V-2021 (3).
-
Chelicerae stylet shaped, curved blades or toothed chelae. Palp with a thumb-claw complex or simple and with 1-5 segments; Stigma, when present, at the base or between bases of chelicerae, at base of gnathosoma, on the anterior margin of the propodosoma or laterally to coxal region between legs III and IV…………….……………………………….…………………………………………………….….…2
– Chelicerae ending in toothed chelae; Simple palpus; Opening of the tracheas absent or indistinct……………….…………………….54
-
With stigma laterally, between legs III and IV region.…………………….Order Mesostigmata……………………………….......……....3
– Stigma, when present, at the base or between bases of chelicerae, at the base of gnathosoma, on the anterior margin of the propodosoma………………………………………Order Trombidiforme……………....…………………………….….…...….…..…...26
-
Adults with more than 20 pairs of dorsal shield setae……....………………….....…..Ascidae………………………………………..Asca
Adults with less than 20 pairs of dorsal shield setae………………………………………..Phytoseiidae.....………………………………....4
-
Podonotal region of dorsal shield with 5 or 6 pairs of lateral setae…………………………………………………………………………..5
– Podonotal region of dorsal shield with 4 pairs of lateral setae………Amblyseiinae…….……………………………….………..……….…9
-
Setae Z1, S2, S4 and S5 absent; Setae r3 usually inserted into the dorsal shield…………………………………………………….…Phytoseiinae…………………………………………………………………………………………………...Phytoseius guianensis De Leon
– At least one of the following setae present: Z1, S2, S4 or S5; Setae r3 usually inserted into the body cuticle…………………………...Subfamily Typhlodrominae…………………….…...…………………………………………………………………………………………..6
-
Setae R1 absent and S2 present…….…………………………………………………………...……Galendromus (G.) annectens (De Leon)
– Setae R1 present and S2 usually absent………………………………………………………………………………….………...…………….7
-
Setae long on the margin of dorsal shield; Setae R1 much smaller than s6……………………………………Typhlodromina tropica (Chant)
– Setae short on the margin of the dorsal shield; Setae R1 and s6 with similar length…………………………………………………...........8
-
Sternal shield with 2 pairs of setae…………………………………………………....Metaseiulus (M.) camelliae (Chant & Yoshida-Shaul)
– Sternal shield with 3 pairs of setae……………………………………………………………..…..……Metaseiulus (M.) eiko (El-Banhawy)
-
Sternal shield with median posterior projection…………………………...………………………………………………….……………10
– Sternal shield without median posterior projection…………………………..……………………………………………………….…….17
-
Chelicerae of normal size and shape, with prominent teeth distributed evenly along the fixed digit; peritreme usually extending to j1 level……………………………………………………....Typhlodromalus……………………………………………………………...11
– Chelicerae reduced in size, with small teeth at the distal tip of the fixed digit; peritreme usually not extending to j3 level……………………………..……………..…………………………………Euseius………………………………...…………………...13
-
Spermatheca with visible ductus major, swollen bifid atrium and thick cervix………………………………………..……………………………………………………………………………………………………………………………………………T. marmoreus (El-Banhawy)
– Spermatheca not as above……………………………….……………………….……………………………………………………….12
-
Setae z4 at most 20% longer than z2……………….…..………………………………………………………… T. peregrinus (Muma)
– Setae z4 about twice longer than z2…………………….……………………..…………………………………………...T. aripo De Leon
-
Dorsal shield smooth……………………………………….……………………………………………………………….…………….14
Dorsal shield reticulated…………………………………….……………………………………………………………………………..15
-
Setae z4 as long or longer than the distance between their bases and bases of setae z2 ..............................................................................………………………………………………………………………………………………………………………………E. concordis (Chant)
– Setae z4 approximately half the distance between their bases and the bases of setae z2 ............................................................................…………………………………………………………………………………………………………………………E. mesembrinus (Dean)
-
Genu III without macroseta………………...…………………………………………………………………….………E. sibelius (De Leon)
– Genu III with macroseta……………………...…………………………………………………………………………….…………….16
-
Setae r3 inserted on unsclerotised cuticle and R1 on dorsal shield……………………………………..........................…E. alatus De Leon
– Setae r3 and R1 inserted on unsclerotised cuticle .....................................……………………………..............E. inouei (Ehara & Moraes)
-
Setae S4 absent…………………………………………………………………………………….……...Phytoseiulus macropilis (Banks)
– Setae S4 present………………………………………………………………………………………………………….………………….18
-
Proportion of setae size s4:Z1>3.1…………………….………………………………………………………………….………………19
– Proportion of setae size s4:Z1<3.1…………………………….……………………………….…………………………………….…...23
-
Setae J2 present or if absent then j5 also absent…………….………………………..…………….……………………………………...20
Setae J2 absent and setae j5 present……………………...………….……………………………………….Proprioseiopsis ovatus (Garman)
-
Sternal shield usually as long as wide; all shields lightly sclerotized ……………………………………………………………………………………………………………………………………………………………………………………Amblyseius chiapensis De Leon
– Sternal shield usually wider than long; all shield heavily sclerotinized………………………...………………………………….……...21
-
Leg I with macrosseta……………………………………………… Iphiseiodes ……………...………………………………………...22
– Leg I without macrosseta……………………………..…………………………………………………………………….…..Arrenoseius
-
Ventri-anal shield with 4 pairs of preanal setae………….………………………………………………..….. I. metapodalis (El-Banhawy)
– Ventri-anal shield with 3 pairs of preanal setae………….……………………………………………........I. zuluagai Denmark & Muma
-
Genus of leg II without and of leg III rarely with macrosseta………………………..…...Neoseiulus……………………………….…...24
– Genus of leg II and III rarely without macrosseta……………………………………………………….Typhlodromips mangleae De Leon
-
Spermathecal calyx about truncate near atrium…………………………………………………………………………N. tunus (De Leon)
– Spermathecal calyx with rounded end near atrium………………………………………….…………………………………………...25
-
Most dorsal setae long, frequently exceeding the bases of nearby setae………………………….…………………………………......... …………………………………………………………………………………………………………………N. californicus (McGregor)
– Most dorsal setae short, not reaching the bases of nearby setae…………………………………………………......... N. fallacis (Garman)
-
Adults with two pairs of legs; body vermiform……………………………………………………………………………………………….Eriophyidae……………………...………………………………………………………………………....Aculus schlechtendali (Nalepa)
– Adults with four pairs of legs; body oval to rounded………………………………………………………………...…….……………...27
-
Palpus with thumb-claw complex …………………….…………………………………………………………………………….…….28
– Palpus without thumb-claw complex……………………………………………………………………………………………………..36
-
Palp tarsus with comb-like setae………………….……………………...Cheyletidae…………………………………….Cheletomorpha
– Palp tarsus without comb like setae…………………….………………………………………………………………………….……...29
-
With long recurved whip like chelicera……………………………………Tetranychidae……………………………………....……….30
– With short needle like chelicerae…..…………..………………….Stigmaeidae.……....………………Agistemus…….…………....….34
-
Empodium with tenent hairs. With prominent projections over rostrum………………………………………………………………… ………………………………………………………………………………………………………………………Bryobia praetiosa Koch
– Empodium without tenent hairs. Without prominent projections over rostrum……………………………………………………….….31
-
Empodium clawlike. With three pairs of para-anal setae……………………………………………………….....Panonychus ulmi (Koch)
– Empodium split distally. With two pairs of para-anal setae………………………………….….Tetranychus…...……...……………….32
-
Empodia I - II with spur……………………………….………...………….…………………………………………………….………33
– Empodia I - II without spur………………………………………….…………………………………………………..…..T. urticae Koch
-
Aedeagus with large knob, posterior and anterior projections pointed, dorsal margin convex……………………………………………………………………………………………………………………………………………………………………T. mexicanus (McGregor)
– Aedeagus head curved hook, with pointed tip………………………………………………………………………….......T. ludeni Zacher
-
Length of setae c1 between 45–60µm……….……………….………………………………….……………………A. floridanus Gonzalez
– Length of setae c1 between 60–80µm………………………….……………………………………………………………………..…...35
-
Ratios of setae ve/ve-ve 2.5, e1/e1-e1 1.9, and h1/h1-h1 2.4 ………........................………….…………..……………....………....…A. brasiliensis Matioli, Ueckermann & Oliveira
– Ratios of setae ve/ve-ve 3.7, e1/e1-e1: 2.3, and h1/h1-h1: 2.0.…..................…………………….………… ……………………………………………………………………………………………………………………………………………A. riograndensis Johann & Ferla
-
Gnatosoma with quadrangular or circular contour; Leg IV slender without pretarsus and claws in females, but, usually with a sessile single claw in males, leg IV with three-segmented in females with femurgenu and tibiotarsus fused, in male with three or four segments with tibia and tarsus usually separate……………………………………..……………...Tarsonemidae ……………………….…………... 37
– Gnatosoma with variable contour; Leg IV not like this …………………………………………………….……………………..…….. 45
-
Metapodosomal venter with 3 or 4 pairs of setae; leg I without pulvillus………………………………..………………………………..…………………………………………………………………………………………………………Polyphagotarsonemus latus (Banks)
– Metapodosomal venter with 2 pairs of setae; Leg I with pulvillus…………………….……..........………………………………………38
-
Some of the dorsal idiossomal setae enlarged……………..………………….....….Daidalotarsonemus…….……………….…………39
– Dorsal idiossomal setae not enlarged………………….……………………………………………………………………….…………40
-
Setae e thin (± 3 µm); palp long (± 18 µm).....................................……………………………........D. esalqi Rezende, Lofego & Ochoa
– Setae e broad (± 17 µm); palp short (± 10 µm)...............................……………………………......D. savanicus Rezende, Lofego & Ochoa
-
Gnathosornal palpi markedly elongated……………………….……………………………………………………….Rhynchotarsonemus
– Gnathosornal palpi not markedly elongated………………………….………………………………………………….………...……..41
-
Tegula enlogated…………………………………….…………………………………………………………………......Xenotarsonemus
– Tegula not elongated………………………………………….……………………………………………………………….………….42
-
Tarsi I-III relatively long………………………………………….……………………………………………………….Fungitarsonemus
– Tarsi I-III normal………………………………………………...Tarsonemus……………………………………………….……...……..43
-
Setae sc2 at least 1.5 times longer than the distance between their bases…………………………………………….....…...T. waitei Banks
Setae sc2 about as long as or shorter than distance between their bases……………………………………………….…………………...….44
-
Poststernal apodeme not bifurcated anteriorly at the level of setae 3a …………………………………………………………...……………………………………………………………………………………………………………………………………T. merus Lin & Zhang
Poststernal apodeme bifurcated anteriorly at the level of setae 3a………………………………………..……….........T. confusus Ewing
-
Posterior part of opistho dorsum with setae f1 as a trichobothrium………………………………………………………………………...Eupodidae………………………………………………………………………………………………………………………..Benoinyssus
– Setae f1 not like this…………………………………………………………………….…………………………….…………………..46
-
Chelicerae fused at base and with movable digit further modified into an elongate stylet………..…………………………………….. 47
– Chelicerae not fused at base and capable of moving scissor-like over gnathosoma……………………………………………………...Cunaxidae………………………………………………………………………………………………………………………....Cunaxoides
-
Prodorsum without trichobothria…………………………………………...Tenuipalpidae……………………………………….……. 48
Prodorsum with trichobothria…………………………………………………………………….……………………………………….49
-
Setae h2 elongate, much longer than other dorsal setae…………………………………………...….………………………...Tenuipalpus
– Setae h2 not elongate, similar in shape and length of other dorsal setae………………………………………………………...Brevipalpus
-
Adults with 1 pair of genital papillae or papillae absent……….………………………………Iolinidae……………….Pseudopronematulus
– Adults with 2 pairs of genital papillae……………………….……………………..……………………………………………………..50
-
Leg I with vestigial or no apotele………….……………...Triophtydeidae……………………...……………………………Triophtydeus
– Leg I with apotele ……………………………………….………..…..Tydeidae…………………………………………….………….….51
-
Up to three seta on genu II…..............................................…………………………………....................................................................52
– No setae on genu II………………………………...……………………………………………………....Pretydeus henriandrei Kaźmierski
-
Femur III with two setae…………………………….………………………………………………….…...Lorryia aberrans (Oudemans)
– Femur III with no setae…………………………………….………….…………………………….……………….……………………53
-
Femur II with three setae……………….………………………….….…………………………………………………….….Quasitydeus
– Femur II with two setae ………………………………………………………..………………………………..Tydeus californicus (Banks)
-
Prodorsum without specialized sensory organs other than setiform setae; adult idiosoma weakly sclerotized…………………………....Suborder Oribatida, Cohort Astigmatina………………………………………………………………………………….………...…….55
– Prodorsum usually with a pair of specialized setae arising from sensory pits or bothridia (pseudostigmatic organs); adult idiosoma usually well sclerotized……………………………………..……………………… ……………….…………………………………………..………Suborder Oribatida (excluding Astigmatina)
-
One pair of short and strong condilophores……….………………………….Acaridae………………….Tyrophagus putrescentiae (Schrank)
– Condilophores fused into v-shaped sclerites.……………………………Winterschmidtiidae ……………………………………………Czenspinskia transversostriata (Oud.)
Discussion
After a long period of absence of studies on mites in apple cultivation (Lorenzato et al. 1986LORENZATO, D., GRELLMANN, E.O., CHOUENE, E.C. & CACHAPUZ, L.M.M. (1986). Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2), 215–242., Ferla & Moraes 1998FERLA, N.J. & MORAES, G.J.D. (1998). Ácaros predadores em pomares de maçã no Rio Grande do Sul. Anais da Sociedade Entomológica do Brasil 27, 649–654. https://doi.org/10.1590/S0301-80591998000400019.
https://doi.org/10.1590/S0301-8059199800...
, Monteiro 2002MONTEIRO, L.B. (2002). Manejo integrado de pragas em macieira no Rio Grande do Sul II. Uso de Neoseiulus californicus para o controle de Panonychus ulmi. Revista Brasileira de Fruticultura 24(2), 395–405. https://doi.org/10.1590/S0100-29452002000200024
https://doi.org/10.1590/S0100-2945200200...
, Monteiro et al. 2006MONTEIRO, L.B., SOUZA, A. & PASTORI, P.L. (2006). Comparação econômica entre controle biológico e químico para o manejo de ácaro-vermelho em macieira. Revista Brasileira de Fruticultura 28, 514–517. https://doi.org/10.1590/S0100-29452006000300038
https://doi.org/10.1590/S0100-2945200600...
, 2008MONTEIRO, L.B., DOLL, A. & BOEING, L.F. (2008). Effect of Neoseiulus californicus McGregor (Acari: Phytoseiidae) density of on the control of red mite in apple trees. Revista Brasileira de Fruticultura 30, 902–906. https://doi.org/10.1590/S0100-29452008000400011
https://doi.org/10.1590/S0100-2945200800...
), this study presents relevant results on the mite fauna, especially after the recent record of A. schlechtendali in culture (Ferla et al. 2018FERLA, N.J., SILVA, D.E., NAVIA, D., NASCIMENTO, J.M., JOHANN, L. & LILLO, E. (2018). Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Systematic and Applied Acarology 23(6), 1190–1198. https://doi.org/https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
, Nascimento et al. 2020NASCIMENTO, J.M., SILVA, D.E., PAVAN, A.M., CORRÊA, L.L.C., SCHUSSLER, M., JOHANN, L. & FERLA, N.J. (2020). Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60, 659–667. https://doi.org/https://dx.doi.org/10.24349/acarologia/20204394
https://doi.org/10.24349/acarologia/2020...
). Understanding the predators and prey species associated with this crop would facilitate management practices, aiming to improve the apple production. In addition, this is also the first study that evaluates the mite fauna in producing organic apple orchards in Brazil.
The data presented here show the mite fauna associated with apple orchards in southern Brazil. The greatest acarine abundance was observed in the municipality of Antônio Prado, possibly because one more orchard was sampled than in the other municipalities. However, it is worth noting that greater diversity was presented in organic orchards, in addition to low populations of phytophagous mites, suggesting that native predatory mites have the capacity to control P. ulmi and A. schlechtendali, two exotic phytophagous species.
Aculus schlechtendali was the most abundant phytophagous species, suggesting that it is a species with the potential to cause economic damage to the crop. Recent records of the species in the country (Ferla et al. 2018FERLA, N.J., SILVA, D.E., NAVIA, D., NASCIMENTO, J.M., JOHANN, L. & LILLO, E. (2018). Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Systematic and Applied Acarology 23(6), 1190–1198. https://doi.org/https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
, Nascimento et al. 2020NASCIMENTO, J.M., SILVA, D.E., PAVAN, A.M., CORRÊA, L.L.C., SCHUSSLER, M., JOHANN, L. & FERLA, N.J. (2020). Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60, 659–667. https://doi.org/https://dx.doi.org/10.24349/acarologia/20204394
https://doi.org/10.24349/acarologia/2020...
), together with the findings of this study, warn about the possibility of this species reaching the status of a pest in culture. According to a study predicting the potential distribution of A. schlechtendali, in addition to the states in the southern region of the country, other areas in the state of São Paulo and possibly in Minas Gerais were shown to be potentially suitable for its occurrence (Corrêa et al. 2021CORRÊA, L.L.C., SILVA, D.E., NASCIMENTO, J.M.D., OLIVEIRA, S.V. & FERLA, N.J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology 47, 70–73. https://doi.org/10.1080/01647954.2020.1870548.
https://doi.org/10.1080/01647954.2020.18...
). This species is considered an important pest of apple trees in several countries (Duso et al. 2010DUSO, C., CASTAGNOLI, M., SIMONI, S. & ANGELI, G. (2010). The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Experimental and Applied Acarology 51, 151–168. https://doi.org/10.1007/s10493-009-9300-0.
https://doi.org/10.1007/s10493-009-9300-...
), mainly in nurseries and orchards, where it can be found feeding on flowers, fruits and leaves, affecting the plants physiological activity, quality and aesthetics of plants (Easterbrook & Palmer 1996EASTERBROOK, M.A. & PALMER, J.W. (1996). The relationship between early-season leaf feeding by apple rust mite, Aculus schlechtendali (Nal.), and fruit set and photosynthesis of apple. Journal of Horticultural Science 71, 939–944. https://doi.org/10.1080/14620316.1996.11515478.
https://doi.org/10.1080/14620316.1996.11...
, Walde et al. 1997WALDE, S.J., HARDMAN J.M. & MAGAGULA C.N. (1997). Direct and indirect species interactions influencing within-season dynamics of apple rust mite, Aculus schlechtendali (Acari: Eriophyidae). Experimental and Applied Acarology 21, 587–614. https://doi.org/10.1023/A:1018400500688
https://doi.org/10.1023/A:1018400500688...
, Spieser et al. 1998SPIESER, F., GRAF, B., WALTHER, P. & NOESBERGER, J. (1998). Impact of apple rust mite (Acari: Eriophyidae) feeding on apple leaf gas exchange and leaf color associated with changes in leaf tissue. Environmental Entomology 27, 1149–1156. https://doi.org/10.1093/ee/27.5.1149
https://doi.org/10.1093/ee/27.5.1149...
, Duso et al. 2010DUSO, C., CASTAGNOLI, M., SIMONI, S. & ANGELI, G. (2010). The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Experimental and Applied Acarology 51, 151–168. https://doi.org/10.1007/s10493-009-9300-0.
https://doi.org/10.1007/s10493-009-9300-...
).
Spontaneous vegetation present in the orchards showed high acarine diversity, with emphasis on predatory species. Thus, it can be stated that the maintenance of spontaneous vegetation in orchards favors the permanence of predators, acting as a refuge and reservoir for these natural enemies (Altieri 1999ALTIERI, M.A. (1999). The ecological role of biodiversity in agroecosystems. In Invertebrate biodiversity as bioindicators of sustainable landscapes (pp. 19–31). Elsevier. https://doi.org/10.1016/B978-0-444-50019-9.50005-4.
https://doi.org/10.1016/B978-0-444-50019...
, 2002ALTIERI, M.A. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, ecosystems & environment 93(1–3), 1–24. https://doi.org/10.1016/S0167-8809(02)00085-3.
https://doi.org/10.1016/S0167-8809(02)00...
, Prischmann & James 2003PRISCHMANN, D.A. & JAMES, D.G. (2003). Phytoseiid (Acari) on unsprayed vegetation in southcentral Washington: Implications for biological control or spider mites on wine grapes. International Journal of Acarology 29(3), 279–287. https://doi.org/10.1080/01647950308684340
https://doi.org/10.1080/0164795030868434...
). Certain plants associated with orchards play an important ecological role as they are hosts of species that help in the biological control of agricultural pests, as they naturally migrate from this spontaneous vegetation to the main crop of the orchard (Tixier et al. 2000TIXIER, M.S., KREITER, S., AUGER, P., SENTENAC, G., SALVA, G. & WEBER, M. (2000). Phytoseiid mite species located in uncultivated areas surrounding vineyards in three French regions. Acarologia 41,127–140., Lykouressis et al. 2008LYKOURESSIS, D., GIATROPOULOS, A., PERDIKIS, D. & FAVAS, C. (2008). Assessing the suitability of noncultivated plants and associated insect prey as food sources for the omnivorous predator Macrolophus pygmaeus (Hemiptera: Miridae). Biological Control 44(2), 142–148. https://doi.org/10.1016/j.biocontrol.2007.11.003
https://doi.org/10.1016/j.biocontrol.200...
, Ji et al. 2022JI, X.Y., WANG, J.Y., DAINESE, M., ZHANG, H., CHEN, Y.J., CAVALIERI, A., JIANG J. & WAN, N.F. (2022). Ground cover vegetation promotes biological control and yield in pear orchards. Journal of Applied Entomology 146(3), 262–271. https://doi.org/10.1111/jen.12965
https://doi.org/10.1111/jen.12965...
). These plants can provide shelter and food, such as pollen, for predatory mites, keeping them in these areas even in periods with unfavorable abiotic conditions or when there is a shortage of prey (Landis et al. 2000LANDIS, D.A., WRATTEN, S.D. & GURR, G.M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual review of entomology 45(1), 175–201. https://doi.org/10.1146/annurev.ento.45.1.175
https://doi.org/10.1146/annurev.ento.45....
, Tixier et al. 2000TIXIER, M.S., KREITER, S., AUGER, P., SENTENAC, G., SALVA, G. & WEBER, M. (2000). Phytoseiid mite species located in uncultivated areas surrounding vineyards in three French regions. Acarologia 41,127–140., Demite & Feres 2005DEMITE, P.R. & FERES, R.J.F. (2005). Influência de vegetação vizinha na distribuição de ácaros em seringal (Hevea brasiliensis Muell. Arg., Euphorbiaceae) em São José do Rio Preto, SP. Neotropical Entomology 34(5), 829–836. https://doi.org/10.1590/S1519-566X2005000500016.
https://doi.org/10.1590/S1519-566X200500...
), assisting in the colonization of these areas through aerial dispersal (Tixier et al. 2000TIXIER, M.S., KREITER, S., AUGER, P., SENTENAC, G., SALVA, G. & WEBER, M. (2000). Phytoseiid mite species located in uncultivated areas surrounding vineyards in three French regions. Acarologia 41,127–140., Jung & Croft 2001JUNG, C. & CROFT, B.A. (2001). Aerial dispersal of phytoseiid mites (Acari: Phytoseiidae): estimating falling speed and dispersal distance of adult females. Oikos 94(1), 182–190. https://doi.org/10.1034/j.1600-0706.2001.11044.x
https://doi.org/10.1034/j.1600-0706.2001...
). Plantago australis and V. tweediana harbored a greater abundance of mites and presented a higher proportion of predators, demonstrating that they are species with the potential to be maintained in orchards. Faoro (2022)FAORO I.D. (2022). (Org.) Maçãs do grupo ‘Gala’ no Brasil. Florianópolis: Epagri, p. 304. cites Plantago major L. (Plantaginaceae), plantain, a species of the same genus as the main species found in the orchards of this study, as a plant with the potential to harbor predatory mites and recommends its maintenance in orchards. However, further studies on the potential of these plants as reservoirs of natural enemies of phytophagous mites must be carried out.
Phytoseiidae is an important family for apple cultivation (Monteiro et al. 2008MONTEIRO, L.B., DOLL, A. & BOEING, L.F. (2008). Effect of Neoseiulus californicus McGregor (Acari: Phytoseiidae) density of on the control of red mite in apple trees. Revista Brasileira de Fruticultura 30, 902–906. https://doi.org/10.1590/S0100-29452008000400011
https://doi.org/10.1590/S0100-2945200800...
, Silva et al. 2022SILVA, D.E., NASCIMENTO, J.M., PAVAN, A.M., CORRÊA, L.L.C., BIZARRO, G.L., FERLA, J.J., TOLDI T., JOHANN L. & FERLA, N.J. (2022). Mite fauna abundance and composition on apples in southern Brazil. Systematic and Applied Acarology 27, 2139–2155. https://doi.org/10.11158/saa.27.11.2
https://doi.org/10.11158/saa.27.11.2...
), this study presented the greatest diversity, with species that may be migrating from spontaneous vegetation to apple trees. This mite family can feed on phytophagous mites and have other alternative food sources, such as pollen, fungi, plant exudate and insects (McMurtry et al. 1970MCMURTRY, J.A., HUFFAKER, C.B. & VRIE, M.V. (1970). Tetranychids enemies: their biological characteres and the impact of spray practices. Hilgardia 40, 331–390., McMurtry & Rodriguez 1987MCMURTRY, J.A. & RODRIGUEZ, J.G. (1987). Nutritional Ecology of Phytoseiid Mites, Nutritional Ecology of Insects, Mites. Spiders, and Related Invertebrates. 609–644.). The most abundant predator species observed in the orchards evaluated was N. californicus, a species that occasionally uses pollen as food (Pascua et al. 2020PASCUA, M.S., ROCCA, M., GRECO, N. & DE CLERCQ, P. (2020). Typha angustifolia L. pollen as an alternative food for the predatory mite Neoseiulus californicus (McGregor)(Acari: Phytoseiidae). Systematic and applied acarology 25(1), 51–62. https://doi.org/10.11158/saa.25.1.4
https://doi.org/10.11158/saa.25.1.4...
). In Antônio Prado orchards, maintained under organic management, N. californicus was found only on apple plants, however in these orchards there was a greater diversity of predatory mite species. In orchards in the municipalities of Muitos Capões and São Joaquim, under conventional and regenerative management, N. californicus was present both in apple trees and in spontaneous vegetation, however, these orchards showed lower diversity of Phytoseiidae. While 13 species of Phytoseiidae were found in Antônio Prado, in São Joaquim there were only five and in Muitos Capões three. As the last two areas use pesticide spraying to control pests, more frequently in conventional than in regenerative areas, it is likely that the low acarine diversity in these areas compared to organic management areas is related to the use of pesticides. According to Maeyer et al. (1992)MAEYER, L., VINCINAUX, C., PEUMANS, H., VERREYDT, J., BERGE, C., MERKENS, W. & STERK, G. (1992). Usefulness of tolylfluanid in integrated pest control on apples as a regulator of the mite complex equilibrium and with contribution to intrinsic fruit quality of apple cv. In: SHENK AME, WEBSTER AD, WERTHEIM SJ. (Ed). II International Symposium on Integrated Fruit Production, Veldhoven, Netherlands 1, 253–264., less intensive agricultural management allows greater conservation of the diversity of natural enemies. The spraying of pesticides is one of the main factors responsible for reducing the diversity of arthropods, especially natural enemies (Kropczyn & Tuovinen 1988KROPCZYN, D. & TUOVINEN, T. (1988). Occurrence of Phytoseiid mites (Acari: Phytoseiidae) on apple trees in Finland. In Annales Agriculturae Fenniae 27, pp. 305–314., Meyer et al. 2009MEYER, G.A., KOVALESKI, A. & VALDEBENITO-SANHUEZA, R.M. (2009). Seletividade de agrotóxicos usados na cultura da macieira a Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Revista Brasileira de Fruticultura 31, 381–387. https://doi.org/https://doi.org/10.1590/S0100-29452009000200011.
https://doi.org/10.1590/S0100-2945200900...
).
The findings of this study indicate that the different management systems used in orchards influence the occurrence of predatory species, mainly Phytoseiidae, with greater diversity being found in organic orchards. Therefore, to maintain a greater diversity of phytoseiid mites in apple orchards, organic management appears to be the most appropriate to be used. Furthermore, the high acarine diversity, mainly predators, found in the spontaneous vegetation, demonstrated the importance of maintaining these plants in orchards serving as a refuge and reservoir, favoring the permanence of natural enemies in these environments.
Acknowledgments
The authors are grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for their financial support and research fellowships (PQ process n° 313658/2020-0) and University of Vale do Taquari (Univates) for supporting this research. We also thank Daniele Mallmann and Guilherme André Spohr for helping on the sample collection; Elisete Maria de Freitas and Guilherme André Spohr for helping with plant identification; Iury Silva de Castro for making the maps with the collection points. To farms Varaschin Agro, Gilmar Bellé and Zani Luiz Fabre, for the availability of areas during the collection period. This study was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código Financeiro 001.
Data Availability
Supporting data are available at <https://doi.org/10.48331/scielodata.JBIZS9>.
References
- AGRAWAL, A.A. & KARBAN, R. (1997). Domatia mediate plantarthropod mutualism. Nature 387(6633), 562–563. https://doi.org/10.1038/42384.
» https://doi.org/10.1038/42384 - ALTIERI, M.A. (1999). The ecological role of biodiversity in agroecosystems. In Invertebrate biodiversity as bioindicators of sustainable landscapes (pp. 19–31). Elsevier. https://doi.org/10.1016/B978-0-444-50019-9.50005-4.
» https://doi.org/10.1016/B978-0-444-50019-9.50005-4 - ALTIERI, M.A. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, ecosystems & environment 93(1–3), 1–24. https://doi.org/10.1016/S0167-8809(02)00085-3.
» https://doi.org/10.1016/S0167-8809(02)00085-3 - AMRINE, J.W. & STASNY, T.A. (1994). Catalog of the Eriophyoidea (Acarina: Prostigmata) of the world Indira Publishing House.
- AMRINE, JR, J.W., STASNY, T.A. & FLECHTMANN, C.H. (2003). Revised keys to world genera of Eriophyoidea (Acari: Prostigmata). Indira Publishing House.
- ANDRÉ, H.M. (1980). A generic revision of the family Tydeidae (Acari: Actinedida). IV. Generic descriptions, keys and conclusion. Bulletin et Annales de la Societé royale Belge d´Entomologie 116, 103–168.
- ANGIOSPERM PHYLOGENY GROUP. CHASE, M.W., CHRISTENHUSZ, M.J., FAY, M.F., BYNG, J.W., JUDD, W.S., SOLTIS, D.E., MABBERLEY, D.J., SENNIKOV, A.N., SOLTIS, P.S. & STEVENS, P.F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical journal of the Linnean Society 181(1), 1–20.
- BAKER, A.S. (1990). A survey of external morphology of mites of the superfamily Eupodoidea Banks, 1894 (Acari: Acariformes). Journal of Natural History 24(5), 1227–1261. https://doi.org/10.1080/00222939000770741.
» https://doi.org/10.1080/00222939000770741 - BAKER, E.W. & TUTTLE, D.M. (1994). A guide to the spider mites (Tetranychidae) of the United States. Indira Publishing House, 347 p.
- BANKS, N. (1904). Four new species of injurious mites. Journal of the New York Entomological Society 12(1), 53–56.
- BANKS, N. (1912). New american mites. Proceedings of the entomological Society of Washington 14, 96–99.
- BEARD, J.J., OCHOA, R., BAUCHAN, G.R., TRICE, M.D., REDFORD, A.J., WALTERS, T.W. & MITTER, C. (2015). Lucid key: Flat mite genera of the world. Lucid key: Flat mite genera of the world.
- BERLESE, A. (1904). Acari nuovi. Manipulus IIus. Redia 1, 258–280.
- BERLESE, A. (1916). Centuria prima di Acari nuovi. Redia 12, 19–67.
- BIZARRO, G.L., RODE, P.A., SCHUSSLER, M., COSTA, T.D. & FERLA, N.J. (2023). Two new species of the genus Ologamasus (Ologamasidae) from apple orchards in southern Brazil. Zootaxa 5375(4), 495–514. https://doi.org/10.11646/zootaxa.5375.4.3.
» https://doi.org/10.11646/zootaxa.5375.4.3 - CAMPBELL, B.M., BEARE, D.J., BENNETT, E.M., HALL-SPENCER, J.M., INGRAM, J.S., JARAMILLO, F. & SHINDELL, D. (2017). Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and society 22(4). https://doi.org/10.5751/ES-09595-220408.
» https://doi.org/10.5751/ES-09595-220408 - CAPRIO, E., NERVO, B., ISAIA, M., ALLEGRO, G. & ROLANDO, A. (2015). Organic versus conventional systems in viticulture: comparative effects on spiders and carabids in vineyards and adjacent forests. Agricultural Systems 136, 61–69. https://doi.org/10.1016/j.agsy.2015.02.009.
» https://doi.org/10.1016/j.agsy.2015.02.009 - CHANT, D.A. & HANSELL, R.I.C. (1971). The genus Amblyseius (Acarina: Phytoseiidae) in Canada and Alaska. Canadian Journal of Zoology 49(5), 703–758. https://doi.org/10.1139/z71-110.
» https://doi.org/10.1139/z71-110 - CHANT, D.A. & MCMURTRY, J.A. (1994). A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). International Journal of Acarology 20, 223–310. https://doi.org/10.1080/01647959408684022.
» https://doi.org/10.1080/01647959408684022 - CHANT, D.A. & MCMURTRY, J.A. (2007). Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House.
- CORRÊA, L.L.C., SILVA, D.E., NASCIMENTO, J.M.D., OLIVEIRA, S.V. & FERLA, N.J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology 47, 70–73. https://doi.org/10.1080/01647954.2020.1870548.
» https://doi.org/10.1080/01647954.2020.1870548 - DE LEON, D. (1958). Four new Typhlodromus from southern Florida (Acarina: Phytoseiidae). The Florida Entomologist 41(2), 73–76. https://doi.org/10.2307/3492363.
» https://doi.org/10.2307/3492363 - DE LEON, D. (1961). Eight new Amblyseius from Mexico with collection notes on two other species (Acarina: Phytoseiidae). The Florida Entomologist 44(2), 85–91. https://doi.org/10.2307/3492318.
» https://doi.org/10.2307/3492318 - DE LEON, D. (1967). Some mites of the Caribbean Area. Part I. Acarina on plants in Trinidad, West Indies. Kansas.
- DEAN, H.A. (1957). Predators of Oligonychus pratensis (Banks), Tetranychidae. Annals of the Entomological Society of America 50(2), 164–165. https://doi.org/10.1093/aesa/50.2.164.
» https://doi.org/10.1093/aesa/50.2.164 - DEMITE, P.R., CAVALCANTE, A.C., DIAS, M.A. & LOFEGO, A.C. (2016). A new species and redescription of two species of Euseius Wainstein (Acari: Phytoseiidae) from Cerrado biome areas in Brazil. International Journal of Acarology 42(7), 334–340. https://doi.org/10.1080/01647954.2016.1197311.
» https://doi.org/10.1080/01647954.2016.1197311 - DEMITE, P.R. & FERES, R.J.F. (2005). Influência de vegetação vizinha na distribuição de ácaros em seringal (Hevea brasiliensis Muell. Arg., Euphorbiaceae) em São José do Rio Preto, SP. Neotropical Entomology 34(5), 829–836. https://doi.org/10.1590/S1519-566X2005000500016.
» https://doi.org/10.1590/S1519-566X2005000500016 - DEMITE, P.R., MCMURTRY, J.A. & DE MORAES, G.J. (2014). Phytoseiidae Database: a website for taxonomic and distributional information on phytoseiid mites (Acari). Zootaxa 3795, 571–577. https://doi.org/10.11646/zootaxa.3795.5.6.
» https://doi.org/10.11646/zootaxa.3795.5.6 - DENMARK, H.A. (1965). Four new Phytoseiidae (Acari: Mesostigmata) from Florida. The Florida Entomologist 48(2), 89–95. https://doi.org/10.2307/3493097.
» https://doi.org/10.2307/3493097 - DENMARK, H.A. (1982). Revision of Galendromus Muma, 1961 (Acarina: Phytoseiidae). International Journal of Acarology 8(3), 133–167. https://doi.org/10.1080/01647958208683291.
» https://doi.org/10.1080/01647958208683291 - DIEHL, M., FERLA, N.J. & JOHANN, L. (2012). Plantas associadas a videiras: uma estratégia para o controle biológico no Rio Grande do Sul. Arquivos do Instituto Biológico 79(4), 579–586.
- DUSO, C., CASTAGNOLI, M., SIMONI, S. & ANGELI, G. (2010). The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici Experimental and Applied Acarology 51, 151–168. https://doi.org/10.1007/s10493-009-9300-0.
» https://doi.org/10.1007/s10493-009-9300-0 - EASTERBROOK, M.A. & PALMER, J.W. (1996). The relationship between early-season leaf feeding by apple rust mite, Aculus schlechtendali (Nal.), and fruit set and photosynthesis of apple. Journal of Horticultural Science 71, 939–944. https://doi.org/10.1080/14620316.1996.11515478.
» https://doi.org/10.1080/14620316.1996.11515478 - EHARA, S. & DE MORAES, G.J. (1998). A new species of Amblyseius (Euseius)(Acari: Phytoseiidae) from citrus in Uruguay. Entomological Science 1(1), 59–61.
- EL-BANHAWY, E.M. (1984). Description of some phytoseiid mites from Brazil (Acarina: Phytoseiidae). Acarologia 25(2), 125–144.
- EVANS, G.O. (1992). Principles of Acarology. CAB International, Wallingford, p. 563.
- EWING, H.E. (1939). A revision of the mites of the subfamily Tarsoneminae of North America, the West Indies, and the Hawaiian Islands, 1488-2016-123378.
- FAN, Q.H. & ZHANG, Z.Q. (2005). Raphignathoidea (Acari: Prostigmata). Fauna of New Zealand 52 https://doi.org/https://doi.org/10.7931/J2/FNZ.52.
» https://doi.org/10.7931/J2/FNZ.52 - FAN, Q.H., FLECHTMANN, C.H. & DE MORAES, G.J. (2016). Annotated catalogue of Stigmaeidae (Acari: Prostigmata), with a pictorial key to genera. Zootaxa 4176(1), 1–199. https://doi.org/https://doi.org/10.11646/zootaxa.4176.1.1.
» https://doi.org/https://doi.org/10.11646/zootaxa.4176.1.1 - FAORO I.D. (2022). (Org.) Maçãs do grupo ‘Gala’ no Brasil. Florianópolis: Epagri, p. 304.
- FERLA, N.J. & BOTTON, M. (2008). Ocorrência do ácaro vermelho europeu Panonychus ulmi (Koch) (Tetranychidae) associado à cultura da videira no Rio Grande do Sul, Brasil. Ciência Rural 38, 1758–1761. https://doi.org/10.1590/S0103-84782008000600042.
» https://doi.org/10.1590/S0103-84782008000600042 - FERLA, N.J. & MORAES, G.J.D. (1998). Ácaros predadores em pomares de maçã no Rio Grande do Sul. Anais da Sociedade Entomológica do Brasil 27, 649–654. https://doi.org/10.1590/S0301-80591998000400019.
» https://doi.org/10.1590/S0301-80591998000400019 - FERLA, N.J. & MORAES, G.J.D. (2002). Ácaros (Arachnida, Acari) da seringueira (Hevea brasiliensis Muell. Arg.) no Estado do Mato Grosso, Brasil. Revista Brasileira de Zoologia 19, 867–888. https://doi.org/10.1590/S0101-81752002000300025.
» https://doi.org/10.1590/S0101-81752002000300025 - FERLA, N.J., DA SILVA, G.L. & DE MORAES, G.J. (2010). Description of a new species of Arrenoseius Wainstein (Acari: Phytoseiidae) from Brazil and a redescription of a similar species from Argentina. International Journal of Acarology 36(1), 15–19. https://doi.org/10.1080/01647950903490095.
» https://doi.org/10.1080/01647950903490095 - FERLA, N.J., SILVA, D.E., NAVIA, D., NASCIMENTO, J.M., JOHANN, L. & LILLO, E. (2018). Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Systematic and Applied Acarology 23(6), 1190–1198. https://doi.org/https://doi.org/10.11158/saa.23.6.14.
» https://doi.org/10.11158/saa.23.6.14 - FERLA, N.J. & SILVA, G.L. (2009). A new species of Amblyseius Berlese (Acari, Phytoseiidae) from the state of Rio Grande do Sul, Brazil. Revista Brasileira de Entomologia 53, 509–510. https://doi.org/10.1590/S0085-56262009000400003.
» https://doi.org/10.1590/S0085-56262009000400003 - FERLA, J.J., TOLDI, M., WURLITZER, W.B. & FERLA, N.J. (2020). Description of a new species of Aponychus and redescriprion of Tetranychus armipenis (Tetranychidae). Systematic and Applied Acarology 25(6), 1064–1074. https://doi.org/10.11158/saa.25.6.9.
» https://doi.org/10.11158/saa.25.6.9 - FIGUEIREDO JR, E.R. (1950). A aranha vermelha da macieira. Biológico, São Paulo 16, 228–230.
- FLECHTMANN, C.H.W. (1966). Ácaros encontrados em algumas plantas do Estado de São Paulo. Revista de Agricultura 41(4), 161–162.
- FLECHTMANN, C.H. (1996). Rediscovery of Tetranychus abacae Baker & Pritchard, additional description and notes on South American spider mites (Acari, Prostigmata, Tetranychidae). Revista Brasileira de Zoologia 13(3), 569–578. https://doi.org/10.1590/S0101-81751996000300005
» https://doi.org/10.1590/S0101-81751996000300005 - GARMAN, P. (1948). Mite species from apple trees in Connecticut. Connecticut Agricultural Experiment Station, Bulletin 520, 1–27.
- GARMAN, P. (1958). New species belonging to the genera Amblyseius and Amblyseiopsis with keys to Amblyseius, Amblyseiopsis, and Phytoseiulus Annals of the Entomological society of America 51(1), 69–79. https://doi.org/10.1093/aesa/51.1.69
» https://doi.org/10.1093/aesa/51.1.69 - GOMIERO, T., PIMENTEL, D. & PAOLETTI, M.G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic farming. Critical Reviews in Plant Sciences 30, 95–124. https://doi.org/10.1080/07352689.2011.554355
» https://doi.org/10.1080/07352689.2011.554355 - GOMIERO, T. (2018). Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Applied Soil Ecology 123, 714–728. https://doi.org/10.1016/j.apsoil.2017.10.014
» https://doi.org/10.1016/j.apsoil.2017.10.014 - GONZALEZ, R.H. (1965). A taxonomic study of the genera Mediolata, Zetzellia and Agistemus (Acari: Stigmaeidae). Berkeley and Los Angeles: University of California Publications in Entomology 41, 64 pp.
- JEPPSON, L.R., KEIFER, H.H. & BAKER, E.W. (1975). Mites injurious to economic plants. University of California Press, 614 p.
- JI, X.Y., WANG, J.Y., DAINESE, M., ZHANG, H., CHEN, Y.J., CAVALIERI, A., JIANG J. & WAN, N.F. (2022). Ground cover vegetation promotes biological control and yield in pear orchards. Journal of Applied Entomology 146(3), 262–271. https://doi.org/10.1111/jen.12965
» https://doi.org/10.1111/jen.12965 - JOHANN, L., CARVALHO, G.S., MAJOLO, F. & FERLA, N.J. (2013). Stigmaeid mites (Acari: Stigmaeidae) from vineyards in the state of Rio Grande do Sul, Brazil. Zootaxa 3701(2), 238–256. https://doi.org/10.11646/zootaxa.3701.2.6
» https://doi.org/10.11646/zootaxa.3701.2.6 - JOHANN, L., SILVA, G.L., BRENTANO, A.C., CARVALHO, G.S., BOTTON, M. & FERLA, N.J. (2017) Chave ilustrada para identificação da fauna acarina na cultura da videira do estado do Rio Grande do Sul, Brasil. Bento Gonçalves. Comunicado técnico-Embrapa, 17 pp. https://doi.org/10.13140/RG.2.2.23868.33922
» https://doi.org/10.13140/RG.2.2.23868.33922 - JUNG, C. & CROFT, B.A. (2001). Aerial dispersal of phytoseiid mites (Acari: Phytoseiidae): estimating falling speed and dispersal distance of adult females. Oikos 94(1), 182–190. https://doi.org/10.1034/j.1600-0706.2001.11044.x
» https://doi.org/10.1034/j.1600-0706.2001.11044.x - KARG, W. & SCHORLEMMER, A. (2009). New insights into predatory mites (Acarina, Gamasina) from tropical rain forests with special reference to distribution and taxonomy. Zoosystematics and Evolution 85(1), 57–91. https://doi.org/10.1002/zoos.200800016
» https://doi.org/10.1002/zoos.200800016 - KASAP, İ. & ATLIHAN, R. (2021). Population growth performance of Panonychus ulmi Koch (Acarina: Tetranychidae) on different fruit trees. Systematic and Applied Acarology 26, 1185–1197. https://doi.org/10.11158/saa.26.7.1
» https://doi.org/10.11158/saa.26.7.1 - KAŹMIERSKI, A. (1996). A revision of the subfamilies Pretydeinae and Tydeinae (Acari, Actinedida: Tydeidae). Part II. The subfamily Pretydeinae André, 1979 - new taxa, species, review, key and considerations. Mitteilungen Hamburgisches Zoologisches Museum und Institut 93, 171–198.
- KIST, B.B., SANTOS, C.E., CARVALHO, C. & BELING, R.R. (2019). Anuário Brasileiro da Maçã. Editora Gazeta, 56. Available from: https://www.editoragazeta.com.br/produto/anuario-brasileiro-de-horti-fruti-2019/ (Accessed on 01 August 2022).
» https://www.editoragazeta.com.br/produto/anuario-brasileiro-de-horti-fruti-2019/ - KOCH, C.L. (1836). Deutschland Crustaceen, Myriapoden und Arachniden. Regensburg, 90 pp.
- KRANTZ, G.W. & WALTER, D.E. (2009). A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock.
- KREITER, S., TIXIER, M-S. & BOURGEOIS, T. (2003). Do generalist phytoseiid mites (Gamasida: Phytoseiidae) have interactions with their host plants? International Journal of Tropical Insect Science 23, 35–50. https://doi.org/10.1017/S1742758400012236
» https://doi.org/10.1017/S1742758400012236 - KROPCZYN, D. & TUOVINEN, T. (1988). Occurrence of Phytoseiid mites (Acari: Phytoseiidae) on apple trees in Finland. In Annales Agriculturae Fenniae 27, pp. 305–314.
- LANDIS, D.A., WRATTEN, S.D. & GURR, G.M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual review of entomology 45(1), 175–201. https://doi.org/10.1146/annurev.ento.45.1.175
» https://doi.org/10.1146/annurev.ento.45.1.175 - LIN, J. & ZHANG, Z.Q. (2002). Tarsonemidae of the World. Key to genera, geographical distribution, systematic catalogue & annotated bibliography. London: Systematic & Applied Acarology Society, 440.
- LIN, J., ZHANG, Y. & JI, J. (2003). A new species of Neocunaxoides from Fujian, China (Acari: Cunaxidae). Systematic and Applied Acarology 8(1), 101–106. https://doi.org/10.11158/saa.8.1.13
» https://doi.org/10.11158/saa.8.1.13 - LOFEGO, A.C. (1998). Morphological characterization and geographical distribution of Amblyseiinae species (Acari: Phytoseiidae) in Brazil (Doctoral dissertation, Dissertation, University of São Paulo, São Paulo, Brazil).
- LOOTS, G.C. & RYKE, P.A.J. (1967). Neogamasellevans, a new genus of Rhodacaridae (Acari) from Argentina. Neotropica, Notas Zoologicas Sudamericanas 13(40), 13–18.
- LORENZATO, D. (1987). Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha – RS. Agronomia Sulriograndense 23(2), 167–183.
- LORENZATO, D., GRELLMANN, E.O., CHOUENE, E.C. & CACHAPUZ, L.M.M. (1986). Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2), 215–242.
- LORENZATO, D. & SECCHI, V.A. (1993). Controle biológico de ácaros da macieira no Rio Grande do Sul: I - Ocorrência e efeitos dos ácaros fitófagos e seus inimigos naturais em pomares submetidos ao controle biológico e com acaricidas. Revista Brasileira de Fruticultura 15(1): 211–220.
- LORENZI, H. (2014). Manual de identificação e controle de plantas daninhas. Plantio direto e convencional. (7th ed) Plantarum. 384 p.
- LYKOURESSIS, D., GIATROPOULOS, A., PERDIKIS, D. & FAVAS, C. (2008). Assessing the suitability of noncultivated plants and associated insect prey as food sources for the omnivorous predator Macrolophus pygmaeus (Hemiptera: Miridae). Biological Control 44(2), 142–148. https://doi.org/10.1016/j.biocontrol.2007.11.003
» https://doi.org/10.1016/j.biocontrol.2007.11.003 - MAEYER, L., VINCINAUX, C., PEUMANS, H., VERREYDT, J., BERGE, C., MERKENS, W. & STERK, G. (1992). Usefulness of tolylfluanid in integrated pest control on apples as a regulator of the mite complex equilibrium and with contribution to intrinsic fruit quality of apple cv. In: SHENK AME, WEBSTER AD, WERTHEIM SJ. (Ed). II International Symposium on Integrated Fruit Production, Veldhoven, Netherlands 1, 253–264.
- MATIOLI, A.L., UECKERMANN, E.A. & DE OLIVEIRA, C.D. (2002). Some stigmaeid and eupalopsellid mites from citrus orchards in Brazil (Acari: Stigmaeidae and Eupalopsellidae). International Journal of Acarology 28(2), 99–120. https://doi.org/10.1080/01647950208684287
» https://doi.org/10.1080/01647950208684287 - MATOS, C.H.C., PALLINI, A., CHAVES, F.F., SCHOEREDER, J.H. & JANSSEN, A. (2006). Do domatia mediate mutualistic interactions between coffee plants and predatory mites? Entomologia Experimentalis et Applicata 118(3), 185–192. https://doi.org/10.1111/j.1570-7458.2006.00381.x
» https://doi.org/10.1111/j.1570-7458.2006.00381.x - MCGREGOR, E.A. (1950). Mites of the family Tetranychidae. The American Midland Naturalist 44(2), 257–420. https://doi.org/10.2307/2421963
» https://doi.org/10.2307/2421963 - MCGREGOR, E.A. (1954). Two new mites in the genus Typhlodromus (Acarina, Phytoseiidae). Bulletin, Southern California Academy of Sciences 53(2), 89–92. https://doi.org/10.3160/0038-3872-53.2.89
» https://doi.org/10.3160/0038-3872-53.2.89 - MCMURTRY, J.A., HUFFAKER, C.B. & VRIE, M.V. (1970). Tetranychids enemies: their biological characteres and the impact of spray practices. Hilgardia 40, 331–390.
- MCMURTRY, J.A. & RODRIGUEZ, J.G. (1987). Nutritional Ecology of Phytoseiid Mites, Nutritional Ecology of Insects, Mites. Spiders, and Related Invertebrates. 609–644.
- MCMURTRY, J.A., DE MORAES, G.J. & SOURASSOU, N.F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4), 297–320. https://doi.org/10.11158/saa.18.4.1
» https://doi.org/10.11158/saa.18.4.1 - MCMURTRY, J.A., SOURASSOU, N.F. & DEMITE, P.R. (2015). The Phytoseiidae (Acari: Mesostigmata) as biological control agents. Prospects for biological control of plant feeding mites and other harmful organisms, pp. 133–149. https://doi.org/10.1007/978-3-319-15042-0_5
» https://doi.org/10.1007/978-3-319-15042-0_5 - MEYER, G.A., KOVALESKI, A. & VALDEBENITO-SANHUEZA, R.M. (2009). Seletividade de agrotóxicos usados na cultura da macieira a Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Revista Brasileira de Fruticultura 31, 381–387. https://doi.org/https://doi.org/10.1590/S0100-29452009000200011.
» https://doi.org/10.1590/S0100-29452009000200011 - MINEIRO, J.L.C., SATO, M.E., RAGA, A. & KOVALESKI, A. (2015). Ácaro-vermelho-da-macieira, Panonychus ulmi (Koch). Embrapa Uva e Vinho-Capítulo em livro científico (ALICE)
- MONDIN, A.D.S., NUVOLONI, F.M. & FERES, R.J.F. (2016). Four new species of Lorryia (Acari: Tydeidae) associated with Hevea brasiliensis Muell. Arg. (Euphorbiaceae) in Brazil. Zootaxa 4158, 473–490. https://doi.org/10.11646/zootaxa.4158.4.2
» https://doi.org/10.11646/zootaxa.4158.4.2 - MONTEIRO, L.B. (2002). Manejo integrado de pragas em macieira no Rio Grande do Sul II. Uso de Neoseiulus californicus para o controle de Panonychus ulmi Revista Brasileira de Fruticultura 24(2), 395–405. https://doi.org/10.1590/S0100-29452002000200024
» https://doi.org/10.1590/S0100-29452002000200024 - MONTEIRO, L.B., SOUZA, A. & PASTORI, P.L. (2006). Comparação econômica entre controle biológico e químico para o manejo de ácaro-vermelho em macieira. Revista Brasileira de Fruticultura 28, 514–517. https://doi.org/10.1590/S0100-29452006000300038
» https://doi.org/10.1590/S0100-29452006000300038 - MONTEIRO, L.B., DOLL, A. & BOEING, L.F. (2008). Effect of Neoseiulus californicus McGregor (Acari: Phytoseiidae) density of on the control of red mite in apple trees. Revista Brasileira de Fruticultura 30, 902–906. https://doi.org/10.1590/S0100-29452008000400011
» https://doi.org/10.1590/S0100-29452008000400011 - MORAES, G.J. & FLECHTMANN, C.H.W. (2007). Phytophagous mites of tropical crops in eastern South America. In Acarology XI. Proc XI Int Congress, Merida, Mexico (Vol. 2002, pp. 279–288).
- MOREIRA, H.D.C. & BRAGANÇA, H.B.N. (2011). Manual de identificação de plantas infestantes. Campinas: FMC Agricultural Products
- MUMA, M.H. (1963). The genus Galendromus Muma, 1961 (Acarina: Phytoseiidae). The Florida Entomologist 46, 15–41. https://doi.org/10.2307/3493355
» https://doi.org/10.2307/3493355 - NALEPA, A. (1890). Neue Phytoptiden. Anz. kais. Akad. Wiss., Math.-Natur Kl., Wien. 27(20) 212–213.
- NASCIMENTO, J.M., SILVA, D.E., PAVAN, A.M., CORRÊA, L.L.C., SCHUSSLER, M., JOHANN, L. & FERLA, N.J. (2020). Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60, 659–667. https://doi.org/https://dx.doi.org/10.24349/acarologia/20204394
» https://doi.org/10.24349/acarologia/20204394 - OLIVEIRA, J.E., SANTOS, A.C., OLIVEIRA, A.C., SOUZA, I.D., LOPES, P.R.C. & GONDIM JR., M.G.C. (2010). Mite diversity on Rosaceae in the São Francisco Valley, northeast Brazil. 13. International Congress of Acarology, Recife, PE, Abstract Book, pp. 193–194.
- OUDEMANS, A.C. (1931). Acarologische Aanteekeningen CVII. Entomologische Berichten 8, 221–236.
- OUDEMANS, A.C. (1932). Acarologische Aanteekeningen CXII. Entomologische Berichten 8, 350–352.
- PAKTINAT-SAEIJ, S., BAGHERI, M. & NORONHA, A.C.D.S. (2016). A new species of Agistemus Summers (Acari: Trombidiformes: Stigmaeidae) from Brazil, with a key to the American species. Systematic and Applied Acarology 21, 813–819. https://doi.org/10.11158/saa.21.6.8
» https://doi.org/10.11158/saa.21.6.8 - PASCUA, M.S., ROCCA, M., GRECO, N. & DE CLERCQ, P. (2020). Typha angustifolia L. pollen as an alternative food for the predatory mite Neoseiulus californicus (McGregor)(Acari: Phytoseiidae). Systematic and applied acarology 25(1), 51–62. https://doi.org/10.11158/saa.25.1.4
» https://doi.org/10.11158/saa.25.1.4 - PRISCHMANN, D.A. & JAMES, D.G. (2003). Phytoseiid (Acari) on unsprayed vegetation in southcentral Washington: Implications for biological control or spider mites on wine grapes. International Journal of Acarology 29(3), 279–287. https://doi.org/10.1080/01647950308684340
» https://doi.org/10.1080/01647950308684340 - REZENDE, J.M., LOFEGO, A.C. & OCHOA, R. (2015). Two new species of Daidalotarsonemus (Acari: Prostigmata: Tarsonemidae) from Brazil. Acarologia 55(4), 435–448. https://doi.org/https://dx.doi.org/10.1051/acarologia/20152183
» https://doi.org/10.1051/acarologia/20152183 - REZENDE, J.M., LOFEGO, A.C., OCHOA, R. & BAUCHAN, G. (2015). New species of Daidalotarsonemus and Excelsotarsonemus (Acari, Tarsonemidae) from the Brazilian rainforest. ZooKeys (475)1 https://doi.org/10.3897/zookeys.475.8827
» https://doi.org/10.3897/zookeys.475.8827 - ROCHA, M.D.S., SILVA, G.L.D. & FERLA, N.J. (2014). A new species of Neoseiulus (Acari: Mesostigmata: Phytoseiidae) with a key for the Brazilian species of the genus. Zoologia 31(3), 271–274. https://doi.org/10.1590/S1984-46702014000300009
» https://doi.org/10.1590/S1984-46702014000300009 - ROCHA, M.D.S., SKVARLA, M.J. & FERLA, N.J. (2013). A new species of Scutopalus (Acari: Cunaxidae: Cunaxoidinae) from Rio Grande do Sul State, Brazil with a key to world species. Zootaxa 3734(1), 38–44. https://doi.org/10.11646/zootaxa.3734.1.4
» https://doi.org/10.11646/zootaxa.3734.1.4 - SCHMIDT-JEFFRIS, R.A. & BEERS, E.H. (2018). Potential impacts of orchard pesticides on Tetranychus urticae: a predator-prey perspective. Crop Protection 103, 56–64. https://doi.org/10.1016/j.cropro.2017.09.009
» https://doi.org/10.1016/j.cropro.2017.09.009 - SCHRANK, F.V.P. (1781). Enumeratio insectorum Austriae indigenorum Vindelicorum, 548 pp.
- SILVA, D.E., NASCIMENTO, J.M., PAVAN, A.M., CORRÊA, L.L.C., BIZARRO, G.L., FERLA, J.J., TOLDI T., JOHANN L. & FERLA, N.J. (2022). Mite fauna abundance and composition on apples in southern Brazil. Systematic and Applied Acarology 27, 2139–2155. https://doi.org/10.11158/saa.27.11.2
» https://doi.org/10.11158/saa.27.11.2 - SILVA, D.E., RUFFATTO, K., do NASCIMENTO, J.M., DA SILVA, R.T.L., JOHANN, L. & FERLA, N.J. (2020). Agistemus floridanus (Stigmaeidae) as a natural enemy of Panonychus ulmi (Tetranychidae) in vineyards of the Brazilian Southern Region. Phytoparasitica 48, 471–475. https://doi.org/10.1007/s12600-020-00798-4
» https://doi.org/10.1007/s12600-020-00798-4 - SILVA, G.D., CUNHA, U.D., ROCHA, M.D.S., PANOU, E.N. & FERLA, N.J. (2014). Tydeid and triophtydeid mites (Acari: Tydeoidea) associated with grapevine (Vitaceae: Vitis spp.) in Brazil, with the descriptions of species of Prelorryia (André, 1980) and Tydeus Koch, 1835. Zootaxa 3814(4), 495–511. https://doi.org/10.11646/zootaxa.3814.4.3
» https://doi.org/10.11646/zootaxa.3814.4.3 - SILVA, G.L., METZELTHIN, M.H., SILVA, O.S. & FERLA, N.J. (2016). Catalogue of the mite family Tydeidae (Acari: Prostigmata) with the world key to the species. Zootaxa 4135(1), 1–68. https://doi.org/10.11646/ZOOTAXA.4135.1.1
» https://doi.org/10.11646/ZOOTAXA.4135.1.1 - SKVARLA, M.J., FISHER, J.R. & DOWLING, A.P. (2014). A review of Cunaxidae (Acariformes, Trombidiformes): Histories and diagnoses of subfamilies and genera, keys to world species, and some new locality records. ZooKeys 418(1) https://doi.org/10.3897/zookeys.418.7629
» https://doi.org/10.3897/zookeys.418.7629 - SMITH-SPANGLER, C., BRANDEAU, M.L., HUNTER, G.E., BAVINGER, J.C., PEARSON, M., ESCHBACH P.J., SUNDARAM V., LIU H., SCHIRMER P., STAVE C., OLKIN, I. & BRAVATA, D.M. (2012). Are organic foods safer or healthier than conventional alternatives? The systematic review. Annals of internal medicine 157, 348–366. https://doi.org/10.7326/0003-4819-157-5-201209040-00007
» https://doi.org/10.7326/0003-4819-157-5-201209040-00007 - SOLIMAN, Z.R. (1975). Genus Ledermuelleriopsis Willman from Lattakia, Syria (Acari: Prostigmata) with a description of two new species. Acarologia 17(2), 243–247.
- SOUSA, A.S.G., REZENDE, J.M., LOFEGO, A.C., OCHOA, R., BAUCHAN, G., GULBRONSON, C. & OLIVEIRA, A.R. (2020). Two new species of Tarsonemus (Acari: Tarsonemidae) from Bahia, Brazil. Systematic and Applied Acarology 25(6), 986–1012. https://doi.org/10.11158/saa.25.6.4
» https://doi.org/10.11158/saa.25.6.4 - SPIESER, F., GRAF, B., WALTHER, P. & NOESBERGER, J. (1998). Impact of apple rust mite (Acari: Eriophyidae) feeding on apple leaf gas exchange and leaf color associated with changes in leaf tissue. Environmental Entomology 27, 1149–1156. https://doi.org/10.1093/ee/27.5.1149
» https://doi.org/10.1093/ee/27.5.1149 - SUMBERG, J. & GILLER, K.E. (2022). What is ‘conventional’agriculture? Global Food Security 32, 100617. https://doi.org/10.1016/j.gfs.2022.100617
» https://doi.org/10.1016/j.gfs.2022.100617 - TENG, K.F. (1982). On some new species and new records of laelapid mites from China (Acarina: Gamasina). Acta Zootaxonomica Sinica 7, 160–165.
- THE SOIL ASSOCIATION. (2021). Soil Association Standards: Farming and Growing. vo.18.6 (Version 18.6). Updated on 12th February 2021. The Soil Association, Bristol. https://policycommons.net/artifacts/1798421/soil-association-standards-farming-and-growing-version-186/2530065/fragments/ (Accessed 1 March 2023).
» https://policycommons.net/artifacts/1798421/soil-association-standards-farming-and-growing-version-186/2530065/fragments/ - TIXIER, M.S., KREITER, S., AUGER, P., SENTENAC, G., SALVA, G. & WEBER, M. (2000). Phytoseiid mite species located in uncultivated areas surrounding vineyards in three French regions. Acarologia 41,127–140.
- VAN LEEUWEN, T. & DERMAUW, W. (2016). The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual Review of Entomology 61, 475–498. https://doi.org/10.1146/annurev-ento-010715-023907
» https://doi.org/10.1146/annurev-ento-010715-023907 - VERES, A., PETIT, S., CONORD, C. & LAVIGNE, C. (2013). Does landscape composition affect pest abundance and their control by natural enemies? A review. Agriculture, Ecosystems & Environment 166, 110–117. https://doi.org/10.1016/j.agee.2011.05.027
» https://doi.org/10.1016/j.agee.2011.05.027 - WALDE, S.J., HARDMAN J.M. & MAGAGULA C.N. (1997). Direct and indirect species interactions influencing within-season dynamics of apple rust mite, Aculus schlechtendali (Acari: Eriophyidae). Experimental and Applied Acarology 21, 587–614. https://doi.org/10.1023/A:1018400500688
» https://doi.org/10.1023/A:1018400500688 - WALKER, J.T., SUCKLING, D.M. & WEARING, C.H. (2017). Past, present, and future of integrated control of apple pests: the New Zealand experience. Annual Review of Entomology 62, 231–248. https://doi.org/10.1146/annurev-ento-031616-035626
» https://doi.org/10.1146/annurev-ento-031616-035626 - WALTER, D.E., LINDQUIST, E.E., SMITH, I.M., COOK, D.R. & KRANTZ, G.W. (2009). Order trombidiformes. In: Krantz, G.W. & Walter, D.E. eds(2009). A manual of Acarology (3rd ed). Texas Tech University Press; Lubbock, Texas. 807pp.
- WILLETT, W., ROCKSTRÖM, J., LOKEN, B., SPRINGMANN, M., LANG, T., VERMEULEN, S., ... & MURRAY, C. J. (2019). Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The lancet 393(10170), 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4
» https://doi.org/10.1016/S0140-6736(18)31788-4 - WURLITZER, W.B., BIZARRO, G.L., JOHANN, L., FERLA, N.J. & DA SILVA, G.L. (2021). A new species of Pulaeus and the first report of Coleoscirus tuberculatus for the fauna of Brazil (Acari: Cunaxidae). Systematic and Applied Acarology 26(7), 1254–1263. https://doi.org/10.11158/saa.26.7.6
» https://doi.org/10.11158/saa.26.7.6 - WURLITZER, W.B., JOHANN, L., FERLA, N.J. & DA SILVA, G.L. (2020). New species of the genera Lupaeus and Rubroscirus (Acari: Cunaxidae) from Southern Brazil. Systematic and Applied Acarology 25(12), 2224–2234. https://doi.org/10.11158/saa.25.12.6
» https://doi.org/10.11158/saa.25.12.6 - WURLITZER, W.B., MONJARÁS-BARRERA, J.I., JOHANN, L., FERLA, N.J. & SILVA, G.L. (2020). New species of predatory mites (Acari: Prostigmata: Cunaxidae) for southern Brazil. Zootaxa 4718(3), 401–412. https://doi.org/https://doi.org/10.11646/zootaxa.4718.3.8
» https://doi.org/10.11646/zootaxa.4718.3.8 - ZACHVATKIN, A.A. (1949). New representatives of segmented mites (Acarina, Pachygnathidae). – Entomol. oboz. 30: 292–297.
- KAŹMIERSKI, A. (1996). A revision of the subfamilies Pretydeinae and Tydeinae (Acari, Actinedida: Tydeidae). Part II. The subfamily Pretydeinae André, 1979 - new taxa, species, review, key and considerations. Mitteilungen Hamburgisches Zoologisches Museum und Institut 93, 171–198.
- ZHU, Z., JIA, Z., PENG, L., CHEN, Q., HE, L., JIANG, Y. & GE, S. (2018). Life cycle assessment of conventional and organic apple production systems in China. Journal of Cleaner Production 201, 156–168. https://doi.org/10.1016/j.jclepro.2018.08.032.
» https://doi.org/10.1016/j.jclepro.2018.08.032
Edited by
Publication Dates
-
Publication in this collection
22 Mar 2024 -
Date of issue
2024
History
-
Received
12 Dec 2023 -
Accepted
25 Feb 2024