This paper deals with the global stabilization problem of linear systems with saturating actuators. Global stabilization is achieved by scheduling a parameterized control law constructed from a parameterized solution of the algebraic Riccati Equation (ARE). The scheduling algorithm is guided by the magnitude of the control signal and reduces conservativeness of similar existing schemes. Several important properties of this algorithm regarding its functionality, design parameters, implementation issues, and capabilities are discussed. Simulation results for a case study are included illustrating the main features of the control scheme and the overall performance of the closed loop system.
Saturation; global stabilization; scheduling; Riccati equation