Open-access Nanostructured titanium dioxide for use in bone implants: a short review

Dióxido de titânio nanoestruturado para uso em implantes ósseos: uma breve revisão

Abstract

Titanium dioxide (TiO2) based nanostructured materials have shown great potential for use in implants thanks to their excellent physicochemical properties, such as high specific surface area, ability to elicit positive cell response, and stability in body fluids. However, there are few studies in the literature that focus on the use of nanostructured TiO2 to support cell growth and bone regeneration. The purpose of this survey is to review the state of the art of TiO2 for use in bone implants, as well as provide insight into its characteristics and synthesis methods. Studies of the biological properties of nanostructured TiO2 are described, establishing its potential for the biomedical field.

Keywords: nanostructured materials; titanium dioxide; biomaterials

Resumo

Os materiais nanoestruturados à base de dióxido de titânio (TiO2) têm demonstrado grande potencial para uso em implantes graças às suas excelentes propriedades físico-químicas, como alta área superficial específica, capacidade de provocar resposta celular positiva e estabilidade nos fluidos corporais. No entanto, existem poucos estudos na literatura que se concentram no uso de TiO2 nanoestruturado para fins de suporte ao crescimento celular e regeneração óssea. O objetivo desta pesquisa é revisar o estado da arte do TiO2 para uso em implantes ósseos, além de fornecer informações sobre suas características e métodos de síntese. São descritos estudos das propriedades biológicas do TiO2 nanoestruturado, estabelecendo seu potencial para o campo biomédico.

Palavras-chave: materiais nanoestruturados; dióxido de titânio; biomateriais

INTRODUCTION

Materials for bone repair or regeneration are needed in many situations in orthopedics and orthodontics and are critical for people suffering from osteoporosis, bone cancer, joint and spinal disease, and disorders. As the world population ages and cases of osteoporosis and bone trauma increase sharply among the elderly, the number of individuals that need bone implants to boost bone regeneration has grown dramatically in recent decades 1), (2. The use of autogenous and allogeneic bone grafts may help in the treatment of bone lesions. However, they have numerous disadvantages, such as the need for secondary surgery, limitation in the number of grafts, risk of infections, and immune responses, which may cause other severe health problems 3), (4. In recent years, most orthopedic research has focused on nanostructured biomaterials due to their similarities to the natural physiological environment 5)- (11. Nanoscale morphology has unique properties such as high surface area and a higher degree of biological plasticity than other microstructures 12)- (14. Studies have shown that the surface or chemical properties of these microstructures are similar to those of native bone, affecting how cells adhere to their surface, their biochemical functions, and cell differentiation 15)- (17.

Several materials have been studied for the fabrication of nanostructures for biomedical applications in bone repair 18)- (24, including TiO2. The mechanical properties, biocompatibility, low cytotoxicity, stability in body fluids 25)- (30, and corrosion resistance of TiO2 give it a great potential for use in bone implants 31), (32. Researches 15), (33)- (35 have shown that nanostructured TiO2 elicits a favorable molecular response and osseointegration, with better bone formation than non-nanostructured materials. However, despite advances in the development of nanostructured TiO2 systems for bone repair, review articles addressing this topic are still scanty. Therefore, this paper aims to review the characteristics and fabrication methods of nanostructured titanium dioxide and to focus on studies that evaluated its potential for bone implants.

CHARACTERISTICS OF TITANIUM DIOXIDE

Titanium dioxide is a white solid that is technologically important due to its numerous properties 36), (37, such as low modulus of elasticity, good tensile strength, biocompatibility, and corrosion resistance, as well as its abundance 38)- (41. TiO2 has been used in a variety of applications, e.g., in biomedicine as catalyst support 37), (42, in water and air purification systems 17), (43, in pigments or opacifiers, in cosmetics 36), (37 and solar cells 44), (45, and in various biomedical applications 46), (47.

Under atmospheric pressure, TiO2 exists in 3 polymorphic forms (Table I), known as rutile, anatase, and brookite 38), (39. These polymorphs can be described by a Ti4+ cation coordinated by 6 oxygen atoms, forming a distorted octahedron 45), (48), (49, whose polymorphic shapes are dictated by the way these octahedrons combine. The anatase form has a tetragonal structure and a unit cell with 4 titanium dioxide molecules (Fig. 1a). The rutile form also has a tetragonal structure and two titanium dioxide molecules per unit cell (Fig. 1b). Brookite has an orthorhombic structure and a unit cell containing 8 molecules (Fig. 1c). Compared to anatase and rutile, brookite is the least dense form of TiO242), (44), (50), (51. The properties of TiO2 vary according to the polymorphic phase (Table I). Rutile is the most stable phase, while anatase and brookite are metastable and can be irreversibly transformed into rutile at high temperatures. This phase transition and stability can be influenced by impurities, defects, grain size, reaction atmosphere, and synthesis conditions 49. In addition, the stability of polymorphic phases depends on grain size. It has been reported that anatase is stable in crystallite sizes smaller than 11-45 nm due to the high surface free energy associated with this particle size 50), (52.

Table I
Properties of anatase, rutile, and brookite.
Tabela I
Propriedades do anatásio, rutilo e brookita.

Figure 1:
Crystalline structure of: a) anatase; b) rutile; and c) brookite. Gray and white spheres represent O and Ti atoms, respectively.
Figura 1:
Estrutura cristalina de: a) anatásio; b) rutilo; e c) brookita. Esferas cinza e branca representam átomos de O e Ti, respectivamente.

TiO2 is an n-type semiconductor whose electronic and optical properties are influenced by the nature of the conduction band 71), (72. The photocatalytic process is based on the absorption of UV light by titanium dioxide. When the level of photon energy is greater than or equal to that of the band gap, the photoexcited electrons jump from the valence band to the conduction band, leaving electron holes (Eq. A). In aqueous media, reactions may occur between excited TiO2 and the medium. Electron holes interact with water or with the hydroxyl radical, forming hydrogen and hydroxyl ions (Eqs. B and C). Oxygen can also be adsorbed on titanium dioxide particles, reacting with electrons in the conduction band and generating superoxide (Eq. D) 37), (73)- (75:

TiO 2 + hv ( UV ) h + + e - (A)

h + + H 2 O H + + ˙ OH (B)

h + + OH - ˙ OH (C)

e - + O 2 ˙ O 2 - (D)

where, h+ and e- represent an unpaired electron, an electron hole in the valence band, and an electron in the conduction band, respectively, and hν is the photon energy 74. Rutile and anatase are photoactive, and their electrons are excited in the range of ultraviolet radiation 72), (76)- (79. The structure of anatase has higher photocatalytic activity than that of rutile 53), (80, because of its greater density of localized states and its lower electron-hole recombination rate than rutile 74.

Nanostructured TiO2 has attracted great attention in recent years because it can be used in various fields of science and technology 81)- (87. At least one of the dimensions of nanostructured TiO2 polymorphs ranges from 1 to 100 nm. Depending on the field of science and technology, materials that have one of its dimensions larger than 100 nm and smaller than 1000 nm are also referred to as nanometric or are considered submicrometric. Nanometric materials, which have a high surface area to volume ratio, comprise thin films, nanotubes, nanowires, nanostrips, nanofibers, and nanoparticles 72), (78), (88. Nanostructured TiO2 has been described as a promising non-resorbable material for use in bone implants 41), (89), (90. Recent studies 16), (21), (91)- (94 indicate that nanoscale modification of the TiO2 surface topography can positively influence cell behavior, improving implant osseointegration and aiding greater initial biointegration with surrounding tissue 95), (96. Bone is a nanostructured compound of collagen and hydroxyapatite fibers 14), (17), (97), (98. Hence, nanoscale surface topography mimics the topographic characteristics of the extracellular matrix of bone tissue, providing cellular support, and in some cases, adequate porosity for the process of cell adhesion, proliferation, and differentiation during the bone formation process 29), (99), (100.

TiO2 can also be used as a coating for metal implants in tissue engineering applications. Ti osseointegration can be improved by changing the surface, such as depositing a thicker layer of TiO2 on the metal surface 101)- (103. It has been reported that TiO2 coatings manufactured on the surface of a metal alloy improve corrosion resistance, biocompatibility, and promote good cell functionality and bone formation 104)- (107. Composite materials also have satisfactory properties for biomaterials due to the good combination of mechanical properties and excellent biocompatibility. Studies have shown that hydroxyapatite and titanium dioxide (HAp-TiO2) composites improve mechanical resistance, osseointegration, and cell fixation due to the similarity of hydroxyapatite to various calcified tissues of vertebrates. TiO2 is able to improve the bond strength of the hydroxyapatite layer and Ti substrate, as well as corrosion resistance 108)- (111. Some authors 112)- (116 have found that the presence of hydroxyapatite increases the resistance to corrosion, the integration of implants in bone tissue, and bone growth. In addition, the HAp-TiO2 composite has excellent chemical and structural uniformity.

FORMS OF SYNTHESIS USED IN THE PRODUCTION OF BIOMATERIALS

Nanostructured TiO2 can be synthesized by several methods, including anodization 117, sol-gel 118), (119, hydrothermal 89), (120, and electrospinning 121)- (123. Among these techniques, anodization and sol-gel have attracted the attention of research groups for biomedical applications, due to their simplicity, low-cost 124), (125, ability to produce nanostructures with high surface area to volume ratios 124), (126, and their ability to generate highly organized and corrosion resistant structures 12), (127. Table II describes the characteristics of nanostructured TiO2 produced by anodization and sol-gel. Several properties of nanoscale TiO2 can significantly improve the performance of biomaterials, which can be affected by the method employed for their fabrication 41), (128)- (132. Therefore, depending on the experimental conditions, synthesized materials have different characteristics 31), (133), (134, including pore structure and interconnectivity, nanotopography, and mechanical properties 135)- (139.

Table II
Processing methods of nanostructured TiO2.
Tabela II
Métodos de síntese de TiO2 nanoestruturado.

Anodization is a process that involves the application of an electric field between the metal and an anode, which triggers ionic diffusion, resulting in the formation of ordered nanotubes on the anode surface. The process is performed when a two-electrode system is exposed to alternating voltage in an electrolyte under controlled conditions 90), (168. TiO2 nanotubes can be grown in aqueous hydrogen fluoride (HF) electrolytes containing acid 144), (150), (153 or in neutral mixtures with added fluoride salts 143), (146), (151. The voltage applied in the anodization process affects the TiO2 nanotube diameter. Several studies 142), (147)- (149), (152 reported that the TiO2 nanotube diameter increases in response to increasing voltage (Fig. 2). In addition, as the applied voltage is increased, the surface morphology changed from particulate to tubular. Recently, other studies 105), (140), (141 also demonstrated that different TiO2 nanotube diameters can be obtained by controlling the voltage applied in the anodization process. TiO2 nanotube diameter can also be influenced by the type of electrolyte. In an early study 154, titanium metal sheet in phosphate and fluorine electrolytes was used to form nanotubes; the results indicated that the nanotube diameters were 50 and 100 nm using NH4F and H3PO4 electrolytes, respectively. In another study 145, TiO2 nanotubes were produced by anodizing titanium metal sheet in NH4F and H3PO4 electrolyte; the authors also stated that changing the electrolyte from NH4F to H3PO4 caused the nanotube diameter to increase from 174.2 to 235.3 nm.

Figure 2:
Influence of applied voltage on the diameter of TiO2 nanotubes obtained by anodization.
Figura 2:
Influência da tensão aplicada no diâmetro dos nanotubos de TiO2 obtidos por anodização.

In the sol-gel method, a solution transitions to a gel state that can solidify into an interconnected network of particles. The solution may be formed by means of hydrolysis and polymerization reactions 124), (126. The firing temperature of gels affects the morphology of nanostructured TiO2. Several studies 56), (155), (156), (158)- (161), (163)- (165), (167 reported that firing at up to 550 ºC resulted in spherical particles, and only anatase phase was found. At temperatures above 600 ºC, larger particles and development of the rutile phase were observed 56. Peaks of the rutile phase observed after heating at 700 ºC were attributed to anatase to rutile phase transition 157), (162), (163. The morphology of nanostructures can also be influenced by the ratio between quantities of reactants, notably the ratio of ceramic precursor to water. Nanocrystalline titanium dioxide powders were synthesized by the sol-gel method, varying the rate of hydrolysis 163. The nanoparticles were synthesized by hydrolysis using as precursor 20 mL of titanium isopropoxide mixed with 100 mL of ethanol and different amounts of water to control the hydrolysis rate. The results indicated that powder prepared with 2 mL of water contained very fine anatase crystals and quasi-spherical nanoparticles. Upon increasing the amount of water to 5 and 10 mL, spherical and homogeneous structures were obtained in response to the increase in hydrolysis rate, which proves that increasing the amount of water facilitates particle formation 163. TiO2 nanoparticles were also produced by the sol-gel method using 0.5 g of titanium tetrabutoxide, 50 mL of diethylene glycol, and different amounts of water; it was found that, as the amount of water increased from 0.5 to 5 mL, the mean particle diameter decreased from 550 to 250 nm 56.

STUDIES OF THE BIOLOGICAL PROPERTIES OF NANOSTRUCTURED TiO2 USED IN BIOMEDICINE

As mentioned earlier herein, nanostructured TiO2 has attracted the attention of researchers for the development of biomaterials 169)- (173 and implant technology 6), (71), (174)- (178. Studies have shown that the cellular response is affected by the material’s topography 179)- (184. Cells respond positively to nanotopography, with changes in cell morphology, cytoskeleton organization, and proliferation. This means that nanostructuring plays an important role in cellular interaction 15), (31. Table III lists several studies on nanostructured TiO2, revealing how nanoscale topography and crystal structure affect cell-surface interactions. It has been reported 31), (191), (204)- (208 that nanotubular surfaces produced by anodization are able to display cellular responses and simulate a bioactive matrix for cellular accommodation. This is due to increased surface wettability and selective adsorption of proteins in body fluids 12), (47. TiO2 nanotubes have good biocompatibility due to their low cytotoxicity, good stability, and cytocompatibility, including adhesion, proliferation, and differentiation of osteoblasts with high surface area to volume ratio 209. In this context, the TiO2 nanotube surface favors osteoblast adhesion and exhibits a strong ability to bind to bone 210. Moreover, it facilitates fluid exchange, which is responsible for improving molecular signaling in bone remodeling and functioning characteristics 211.

Table III
Studies of the biological properties of nanostructured TiO2.
Tabela III
Estudos das propriedades biológicas do TiO2 nanoestruturado.

Several properties can affect cellular responses and protein adsorption in biological systems 47), (212. Hydrophilicity and surface roughness 101), (213)- (216, associated with the high surface area to volume ratio characteristic of nanostructured materials, have been shown to promote high cell adhesion, proliferation, and differentiation 217)- (220. Numerous studies 16), (17), (174), (185), (189)- (191), (195 have shown that nanoscale TiO2 nanotube surfaces present uniform structure, roughness, and hydrophilicity, with contact angles smaller than 55°. Porosity is essential for bone implants, being responsible for the formation of bone tissue, proliferation of osteoblasts, vascularization, and bioactivity. In addition, a porous structure provides good mechanical stability due to the better mechanical interlock between the biomaterial implant and the natural bone 203), (221), (222. Some studies 223)- (227 report that a porous structure significantly accelerates cell adhesion and bone growth capacity. The pores must be interconnected with dimensions between 200 to 500 µm to meet the migration and transport requirements of the cell, providing adequate space and permeability for viable bone formation in nanostructured TiO2.

Nanoscale topography has been shown to be the ideal size for the best osteoblast function 194), (228), (229. According to 198, osteoblast adhesion and propagation was improved by the topography of TiO2 nanotubes, forming an interconnected cell structure. The nanoscale structure hastened the growth rate of MC3T3-E1 osteoblastic cells by up to 300% to 400%. Several studies 149), (174), (185), (187), (192), (194), (195 also found that cells attached to the surface of nanotubes became increasingly elongated and formed small filopodia, suggesting that they could be used for orthopedic purposes. Over the years, several researchers 144), (188), (190), (192), (193), (196 have found that the surfaces of TiO2 nanotubes immersed in simulated body fluid (SBF) favor the formation of osteoblast-like hydroxyapatite, which is critical for osseointegration, with strong adhesion and binding 230), (231. As noted by several authors 16), (35), (198), (232), (233, the anatase and rutile phases provide adequate atomic arrangements for the formation of hydroxyapatite. Anatase provides the best effects for cell adhesion, proliferation, and differentiation because it is more chemically reactive. Nevertheless, the rutile phase is also interesting due to its higher modulus of elasticity, hardness, and adhesive strength than anatase. Hence, the anatase phase and the mixed anatase-rutile phase are beneficial for cell growth, due to their hydroxyapatite mineralization and increased corrosion resistance. It has been reported that the crystal structure of anatase facilitated osteoblast growth and exhibited structural stability in physiological medium 149), (174), (186), (188), (190), (192), (193), (196), (198. Moreover, it has been suggested that osteoblasts disseminate better in anatase-rutile mixtures 186), (193), (195), (234.

Alkaline phosphatase (ALP) activity serves to analyze the functionality of cells on a surface. TiO2 nanotubes were produced through the anodization process and evaluated for bone cell interactions using ALP 195. During each day of analysis, the cells showed a filamentous network-like structure scattered over the entire surface. It was reported that after the 5th day of cultivation, the ALP level exceeded the titanium substrate 195. It has been pointed out that ALP in osteoblasts gradually increased on the surface of TiO2 nanotubes as the number of days of cultivation increased, showing excellent cell-to-cell binding 15), (17), (197), (198. TiO2 gels produced by the sol-gel technique can potentially be used in biomedical applications. The formation of hydroxyapatite immersed in SBF in amorphous and crystalline TiO2 gels was investigated 202), (203. TiO2 gels with an amorphous structure did not induce the formation of hydroxyapatite on their surfaces in simulated body fluid, while gels with anatase or mixed anatase-rutile induced hydroxyapatite formation on their surfaces. Some authors 199)- (201 have discussed the influence of doping elements via the sol-gel method. They found that doping with calcium ions stimulates bioactivity, improving the formation of hydroxyapatite on the surface of nanostructured TiO2.

For in vivo evaluations, it is essential for nanostructured biomaterials to be biocompatible and prevent inflammatory response. Such studies can be performed using animal models that can mimic the growth environment and bone infection. Several animals such as rats and pigs can be used for in vivo experiments, depending on research needs, proper bone size, ease of handling, and low costs 16), (235)- (238. Popat et al. 197 synthesized TiO2 nanotubes by anodization and used the G8080 cell line. They assessed in vivo biocompatibility on surfaces of subcutaneous implants in male Lewis rats and made a histological analysis of the tissue around the implants after 4 weeks. The results indicated that TiO2 nanotubes were uniform and caused no inflammation, and that the tissue was normal and healthy. Li et al. 187 evaluated the behavior of MC3T3-E1 osteoblasts in experiments with Sprague Dawley rats. After 4 weeks they observed that the anodized implant surface promoted osseointegration. Their study demonstrated the good biological performance of TiO2 nanotubes, which are able to withstand the forces they undergo during and after insertion into the bone.

CONCLUSIONS

The studies presented in this review of nanostructured TiO2 demonstrate a promising perspective for tissue engineering, given the possible use of this nanomaterial in bone reconstruction. Biological responses can be controlled by modifying fabrication procedures, e.g., by applying variations in voltage, electrolytes, and using heat-treatments. Studies have shown that nanostructured TiO2 immersed in simulated body fluid favors the formation of osteoblast-like hydroxyapatite. Equally important, in vivo assays have confirmed the biocompatibility and absence of inflammatory response of TiO2 nanotubes, which is a material with great potential for application in bone regeneration.

ACKNOWLEDGEMENTS

The authors thank the research funding agencies CAPES (Finance Code 001: scholarship granted to Mrs. Ione Amorim Bezerra Neta) and CNPq (project 308822/2018-8 and 420004/2018-1).

REFERENCES

  • 1 J.I. Dawson, R.O. Oreffo, Arch. Biochem. Biophys. 473 (2008) 124.
  • 2 X. Lin, S. Yang, K. Lai, H. Yang, T.J. Webster, L. Yang, Nanomedicine 13 (2017) 123.
  • 3 A.R. Amini, C.T. Laurencin, S.P. Nukavarapu, Crit. Rev. Biomed. Eng. 40 (2012) 363.
  • 4 J.R. Venugopal, S. Low, A.T. Choon, A.B. Kumar, S. Ramakrishna, Artif. Organs 32 (2008) 388.
  • 5 S. Balasubramanian, B. Gurumurthy, A. Balasubramanian, Int. J. Pharm. Sci. Res. 8 (2017) 4950.
  • 6 E.M. Christenson, K.S. Anseth, J.J. van den Beucken, C.K. Chan, B. Ercan, J.A. Jansen, C.T. Laurencin , W.J. Li, R. Murugan, L.S. Nair, J. Orthop. Res. 25 (2007) 11.
  • 7 L. Hermansson, J. Korean Ceram. Soc. 55 (2018) 95.
  • 8 M. Jäger, H. Jennissen, F. Dittrich, A. Fischer, H. Köhling, Materials 10 (2017) 1302.
  • 9 N. Shadjou, M. Hasanzadeh, Mater. Technol. 31 (2016) 806.
  • 10 M. Vallet-Regí, D. Arcos, Curr. Nanosci. 2 (2006) 179.
  • 11 J. Venugopal, M.P. Prabhakaran, Y. Zhang, S. Low , A.T. Choon , S. Ramakrishna , Philos. Trans. Royal Soc. A 368 (2010) 2065.
  • 12 M. Kulkarni, A. Mazare, E. Gongadze, Š. Perutkova, V. Kralj-Iglič, I. Milošev, P. Schmuki, A. Iglič, M. Mozetič, Nanotechnology 26 (2015) 62002.
  • 13 J. Souza, L. Bins-Ely, M. Sordi, R. Magini, C. Aparicio, T. Shokuhfar, L. Cooper, in “Nanostructured biomaterials for cranio-maxillofacial and oral applications”, J. Souza, D. Hotza, B. Henriques, A. Boccaccini (Eds.), Elsevier (2018) 13.
  • 14 T. Xu, N. Zhang, H.L. Nichols, D. Shi, X. Wen, Mater. Sci. Eng. C 27 (2007) 579.
  • 15 K.S. Brammer, C.J. Frandsen, S. Jin, Trends Biotechnol. 30 (2012) 315.
  • 16 L. Lv, Y. Liu, P. Zhang, X. Zhang, J. Liu, T. Chen, P. Su, H. Li, Y. Zhou, Biomaterials 39 (2015) 193.
  • 17 G. Wang, Y. Wan, B. Ren, Z. Liu, Mater. Sci. Eng . C 95 (2019) 114.
  • 18 P. Gkomoza, M. Vardavoulias, D. Pantelis, C. Sarafoglou, Surf. Coat. Technol. 357 (2019) 748.
  • 19 J.I. Lim, B. Yu, K.M. Woo, Y.-K. Lee, Appl. Surf. Sci. 255 (2008) 2456.
  • 20 S. Mondal, G. Hoang, P. Manivasagan, H. Kim, J. Oh, Ceram. Int. 46, 3 (2019) 3443.
  • 21 L. Salou, A. Hoornaert, G. Louarn, P. Layrolle, Acta Biomater. 11 (2015) 494.
  • 22 Y.-T. Sul, Int. J. Nanomedicine 5 (2010) 87.
  • 23 R. Valiev, I. Sabirov, E. Zemtsova, E. Parfenov, L. Dluhoš, T. Lowe, in “Titanium in medical and dental applications”, F. Froes, M. Qian (Eds.), Elsevier (2018) 393.
  • 24 X.-M. Zhuang, B. Zhou, K.-F. Yuan, Biomed. Pharmacother. 112 (2019) 108649.
  • 25 X. Chen, A. Selloni, Chem. Rev. 114, 19 (2014) 9281.
  • 26 G. Fostad, B. Hafell, A. Førde, R. Dittmann, R. Sabetrasekh, J. Will, J. Ellingsen, S. Lyngstadaas, H. Haugen, J. Eur. Ceram. Soc. 29 (2009) 2773.
  • 27 H. Haugen , J. Will , A. Köhler, U. Hopfner, J. Aigner, E. Wintermantel, J. Eur. Ceram. Soc . 24 (2004) 661.
  • 28 T. Kasuga, H. Kondo, M. Nogami, J. Cryst. Growth 235 (2002) 235.
  • 29 K. Lee, A. Mazare , P. Schmuki , Chem. Rev . 114 (2014) 9385.
  • 30 H. Nygren, P. Tengvall, I. Lundström, J. Biomed. Mater. Res. 34 (1997) 487.
  • 31 Y. Fu, A. Mo, Nanoscale Res. Lett. 13 (2018) 187.
  • 32 M. Garcia-Lobato, A. Mtz-Enriquez, C. Garcia, M. Velazquez-Manzanares, F. Avalos-Belmontes, R. Ramos-Gonzalez, L. Garcia-Cerda, Appl. Surf. Sci . 484 (2019) 975.
  • 33 K. Das, S. Bose, A. Bandyopadhyay, J. Biomed. Mater. Res. A 90 (2009) 225.
  • 34 Y. Peng, Y. Song, Q. Wang, Y. Hu, Y. He, D. Ren, L. Wu, S. Liu, H. Cong, H. Zhou, Int. J. Biol. Macromol. 127 (2019) 48.
  • 35 N. Wang, H. Li , W. Lü, J. Li, J. Wang, Z. Zhang, Y. Liu , Biomaterials 32 (2011) 6900.
  • 36 D.B. Warheit, Toxicol. Lett. 220 (2013) 193.
  • 37 J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, Y. Xu, Chinese J. Catal. 36 (2015) 2049.
  • 38 J. Feng, X. Yan, K. Lin, S. Wang, J. Luo, Y. Wu, Mater. Lett. 214 (2018) 178.
  • 39 I. Shepa, E. Mudra, M. Vojtko, P. Tatarko, V. Girman, O. Milkovic, T. Sopcak, V. Medvecka, J. Dusza, Ceram. Int . 44 (2018) 17925.
  • 40 V. Simi, N. Rajendran, Mater. Charact. 129 (2017) 67.
  • 41 A. Tan, B. Pingguan-Murphy, R. Ahmad, S. Akbar, Ceram. Int . 38 (2012) 4421.
  • 42 K.-R. Zhu, M.-S. Zhang, J.-M. Hong, Z. Yin, Mater. Sci. Eng. A 403 (2005) 87.
  • 43 N. Rahimi, R.A. Pax, E.M. Gray, Prog. Solid. State Ch. 44 (2016) 86.
  • 44 O. Carp, C.L. Huisman, A. Reller, Prog. Solid. State Ch. 32 (2004) 33.
  • 45 V. Zainullina, V. Zhukov, M. Korotin, J. Photochem. Photobiol. C 22 (2015) 58.
  • 46 M. Kulkarni , A. Mazare , E. Gongadze , S. Perutkova, V. Kralj-Iglic, I. Milosev, P. Schmuki , A. Iglic, M. Mozetic, Nanotechnology 26 (2015) 62002.
  • 47 K.M. Kummer, E. Taylor, T.J. Webster , Nanosci. Nanotechnol. Lett. 4 (2012) 483.
  • 48 V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, J. Materiomics 3 (2017) 3.
  • 49 S. Miszczak, B. Pietrzyk, Ceram. Int . 41 (2015) 7461.
  • 50 D.A. Hanaor, C.C. Sorrell, J. Mater. Sci. 46 (2011) 855.
  • 51 M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, K. O’Shea, Appl. Catal. B 125 (2012) 331.
  • 52 I. Ali, M. Suhail, Z.A. Alothman, A. Alwarthan, RSC Adv. 8 (2018) 30125.
  • 53 M. Erol, O. Ertugrul, Ceram. Int . 44 (2018) 2991.
  • 54 H. Lin , L. Li, M. Zhao, X. Huang, X. Chen , G. Li, R. Yu, J. Am. Chem. Soc. 134 (2012) 8328.
  • 55 N.A. Ramos-Delgado, M.Á. Gracia-Pinilla, R.V. Mangalaraja, K. O’Shea , D.D. Dionysiou, Nanotechnol. Rev. 5 (2016) 467.
  • 56 L. Wang, Y. Cai, L. Song, W. Nie, Y. Zhou , P. Chen, Colloids Surf. A Physicochem. Eng. Asp. 461 (2014) 195.
  • 57 I. Ali , M. Suhail , Z.A. Alothman , A. Alwarthan , RSC Adv . 8 (2018) 30125.
  • 58 S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56 (2011) 1639.
  • 59 R. Singh, S. Dutta, Fuel 220 (2018) 607.
  • 60 Z. Li, Z. Yao, A.A. Haidry, T. Plecenik, L. Xie, L. Sun, Q. Fatima, Int. J. Hydrog. Energy 43, 45 (2018) 21114.
  • 61 R. Verma, J. Gangwar, A.K. Srivastava, RSC Adv . 7 (2017) 44199.
  • 62 X. Yan , X. Chen , in “Encyclopedia of inorganic and bioinorganic chemistry”, John Wiley Sons (2015) 1.
  • 63 S. Livraghi, M. Rolando, S. Maurelli, M. Chiesa, M.C. Paganini, E. Giamello, J. Phys. Chem. C 118 (2014) 22141.
  • 64 H. Abdullah, M.M.R. Khan, H.R. Ong, Z. Yaakob, J. CO2 Util. 22 (2017) 15.
  • 65 M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, J. Environ. Chem. Eng. 7, 5 (2019) 103248.
  • 66 R. Fatima, M.N. Afridi, V. Kumar, J. Lee, I. Ali , K.-H. Kim , J.-O. Kim, J. Clean. Prod. 231 (2019) 899.
  • 67 N. Khalid, A. Majid, M.B. Tahir, N. Niaz, S. Khalid, Ceram. Int . 43 (2017) 14552.
  • 68 A. Mishra, A. Mehta, S. Basu, J. Environ. Chem. Eng. 6 (2018) 6088.
  • 69 Z. Shayegan, C.-S. Lee, F. Haghighat, Chem. Eng. J. 334 (2018) 2408.
  • 70 A. Zaleska, Recent Pat. Eng. 2 (2008) 157.
  • 71 T. Li, K. Gulati, N. Wang , Z. Zhang , S. Ivanovski, Mater. Sci. Eng. C 88 (2018) 182.
  • 72 X. Zhao, L. Huang, Ceram. Int . 43 (2017) 3975.
  • 73 R. Ahmad , Z. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam, J. Kim, J. Environ. Chem. Eng. 4 (2016) 4143.
  • 74 K. Cowden, M.F. Dias-Netipanyj, K.C. Popat, Nanomedicine (2019).
  • 75 U.I. Gaya, A.H. Abdullah , J. Photochem. Photobiol. C 9 (2008) 1.
  • 76 M. Qamar, B. Merzougui, D. Anjum, A.S. Hakeem, Z.H. Yamani, D. Bahnemann, Catal. Today 230 (2014) 158.
  • 77 X. Qu, Y. Yi, F. Qiao, M. Liu, X. Wang, R. Yang, H. Meng, L. Shi, F. Du, Ceram. Int . 44 (2018) 1348.
  • 78 L. Rožić, S. Petrović, D. Lončarević, B. Grbić, N. Radić, S. Stojadinović, V. Jović, J. Lamovec, Ceram. Int . 45 (2019) 2361.
  • 79 Z. Tan, K. Sato, S. Ohara, Adv. Powder Technol. 26 (2015) 296.
  • 80 T. Peng, D. Zhao, H. Song, C. Yan, J. Mol. Catal. A Chem. 238 (2005) 119.
  • 81 A.J. Haider, R.H. Al-Anbari, G.R. Kadhim, C.T. Salame, Energy Procedia 119 (2017) 332.
  • 82 Y. Li, J. Luo , X. Hu, X. Wang , J. Liang, K. Yu, J. Alloys Compd. 651 (2015) 685.
  • 83 P. Roy, S. Berger, P. Schmuki , Angew. Chem. Int. Ed. 50 (2011) 2904.
  • 84 B. Sarkar, N. Singhal, R. Goyal, A. Bordoloi, L.S. Konathala, U. Kumar, R. Bal, Catal. Commun. 74 (2016) 43.
  • 85 S. Shen, J. Chen, M. Wang, X. Sheng, X. Chen , X. Feng, S.S. Mao, Prog. Mater. Sci. 98 (2018) 299.
  • 86 J. Singh, S.A. Khan, J. Shah, R. Kotnala, S. Mohapatra, Appl. Surf. Sci . 422 (2017) 953.
  • 87 T. Tao, I.-T. Bae, K.B. Woodruff, K. Sauer, J. Cho, Ceram. Int . 45 (2019) 23216.
  • 88 C. Qizheng, D. Xiangting, W. Jinxian, L. Mei, J. Rare Earths 26 (2008) 664.
  • 89 R. Sabetrasekh , H. Tiainen, J. Reseland, J. Will , J. Ellingsen , S. Lyngstadaas , H. Haugen , Biomed. Mater. 5 (2010) 15003.
  • 90 H. Xu, Q. Zhang, C. Zheng, W. Yan, W. Chu, Appl. Surf. Sci . 257 (2011) 8478.
  • 91 E. Beltrán-Partida, A. Moreno-Ulloa , B. Valdez-Salas, C. Velasquillo, M. Carrillo, A. Escamilla, E. Valdez, F. Villarreal, Materials 8 (2015) 867.
  • 92 S. Chen, Y. Guo, R. Liu, S. Wu, J. Fang, B. Huang, Z. Li , Z. Chen, Z. Chen , Colloids Surf. B 164 (2018) 58.
  • 93 A. Hajjaji, M. Elabidi, K. Trabelsi, A. Assadi, B. Bessais, S. Rtimi, Colloids Surf. B 170 (2018) 92.
  • 94 M.-H. Kim , K. Park, K.-H. Choi, S.-H. Kim , S. Kim, C.-M. Jeong, J.-B. Huh, Int. J. Mol. Sci. 16 (2015) 10324.
  • 95 D. Khang, J. Lu, C. Yao, K.M. Haberstroh, T.J. Webster , Biomaterials 29 (2008) 970.
  • 96 B.K. Mutuma, G.N. Shao, W.D. Kim, H.T. Kim, J. Colloid Interface Sci. 442 (2015) 1.
  • 97 N. Swami, Z. Cui, L.S. Nair , J. Heat Transfer 133 (2011) 34002.
  • 98 A. Tampieri, G. Celotti, E. Landi, M. Sandri, N. Roveri, G. Falini, J. Biomed. Mater. Res. A 67 (2003) 618.
  • 99 G. Wang , H. Feng, W. Jin, A. Gao, X. Peng, W. Li, H. Wu, Z. Li , P.K. Chu, Appl. Surf. Sci . 414 (2017) 230.
  • 100 S. Winardi, R.R. Mukti, K.-N.P. Kumar, J. Wang , W. Wunderlich, T. Okubo, Langmuir 26 (2010) 4567.
  • 101 N.K. Awad, S.L. Edwards, Y.S. Morsi, Mater. Sci. Eng. C 76 (2017) 1401.
  • 102 L.M. Bjursten, L. Rasmusson, S. Oh, G.C. Smith, K.S. Brammer , S. Jin , J. Biomed. Mater. Res. A 92 (2010) 1218.
  • 103 S.M.G. El-Rab, S.A. Fadl-Allah, A. Montser , Appl. Surf. Sci . 261 (2012) 1.
  • 104 A. Bandyopadhyay , A. Shivaram, I. Mitra, S. Bose , Acta Biomater . 96 (2019) 686.
  • 105 K. Cowden , M.F. Dias-Netipanyj , K.C. Popat , Nanomedicine 17 (2019) 380.
  • 106 F. Visentin, A. Galenda, M. Fabrizio, S. Battiston, N. Brianese, R. Gerbasi, V. Zin, N. El Habra, Appl. Surf. Sci . 490 (2019) 568.
  • 107 T. Wang, Z. Weng, X. Liu , K.W. Yeung, H. Pan, S. Wu , Bioact. Mater. 2 (2017) 44.
  • 108 M. Enayati-Jazi, M. Solati-Hashjin, A. Nemati, F. Bakhshi, Superlattices Microstruct. 51 (2012) 877.
  • 109 A.E. Hannora, S. Ataya, J. Alloys Compd. 658 (2016) 222.
  • 110 H.-W. Kim, Y.-H. Koh, L.-H. Li , S. Lee, H.-E. Kim, Biomaterials 25 (2004) 2533.
  • 111 P. Sharma, A. Trivedi, H. Begam, Mater. Today Proc. 16 (2019) 302.
  • 112 S. Pushpakanth, B. Srinivasan, B. Sreedhar, T. Sastry, Mater. Chem. Phys. 107 (2008) 492.
  • 113 S.F. Robertson, A. Bandyopadhyay , S. Bose , Surf. Coat. Technol . 372 (2019) 140.
  • 114 D. Sidane, D. Chicot, S. Yala, S. Ziani, H. Khireddine, A. Iost, X. Decoopman, Thin Solid Films 593 (2015) 71.
  • 115 F. Visentin , N. El Habra, M. Fabrizio , N. Brianese , R. Gerbasi , L. Nodari, V. Zin, A. Galenda , Surf. Coat. Technol . 378 (2019) 125049.
  • 116 H. Zhou , J.G. Lawrence, S.B. Bhaduri, Acta Biomater . 8 (2012) 1999.
  • 117 N.K. Allam, C.A. Grimes, Langmuir 25 (2009) 7234.
  • 118 M. Imran, S. Riaz, S. Naseem, Mater. Today Proc. 2 (2015) 5455.
  • 119 S. Mahshid, M. Askari, M.S. Ghamsari, N. Afshar, S. Lahuti, J. Alloys Compd. 478 (2009) 586.
  • 120 S. Kim , M. Kim, S.-H. Hwang, S.K. Lim, Appl. Catal. B 123 (2012) 391.
  • 121 C. Kuchi, G. Harish, P.S. Reddy, Ceram. Int . 44 (2018) 5266.
  • 122 M. Someswararao, R. Dubey, P. Subbarao , S. Singh, Results Phys. 11 (2018) 223.
  • 123 M. Vahtrus, A. Šutka, S. Vlassov, A. Šutka , B. Polyakov, R. Saar, L. Dorogin, R. Lohmus, Mater. Charact . 100 (2015) 98.
  • 124 G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.-M. Han, C. Mahapatra, H.-W. Kim , J.C. Knowles, Prog. Mater. Sci. 77 (2016) 1.
  • 125 X. Yan , X. Chen , in “Encyclopedia of inorganic and bioinorganic chemistry”, John Wiley Sons (2015) 1.
  • 126 W. Xu, W.Y. Hu , M.H. Li , Q.Q. Ma, P.D. Hodgson, C.E. Wen, Trans. Nonferrous Met. Soc. China 16 (2006) s209.
  • 127 M.F. Kunrath, R. Hubler, R.S. Shinkai, E.R. Teixeira, ChemistrySelect 3 (2018) 11180.
  • 128 S. Areva, V. Ääritalo, S. Tuusa, M. Jokinen, M. Lindén, T. Peltola, J. Mater. Sci Mater. Med. 18 (2007) 1633.
  • 129 G. Crawford, N. Chawla, K. Das , S. Bose , A. Bandyopadhyay , Acta Biomater . 3 (2007) 359.
  • 130 M.A. Khan, U. Farva, Surf. Interfaces 6 (2017) 202.
  • 131 S. Sista, A. Nouri, Y. Li , C. Wen, P.D. Hodgson , G. Pande, J. Biomed. Mater. Res. A 101 (2013) 3416.
  • 132 W. Xu , W. Hu, M. Li, Q. Ma, P. Hodgson, C. Wen , Trans. Nonferrous Met. Soc. China 16 (2006) s209.
  • 133 H.P. Quiroz, C.P. Barrera-Patiño, R.R. Rey-González, A. Dussan, Photonics Nanostruct. 22 (2016) 46.
  • 134 M.A. Rasheed, K. Ahmad, N. Khaliq, Y. Khan, M. Aftab Rafiq, A. Waheed, A. Shah, A. Mahmood, G. Ali, Curr. Appl. Phys. 18 (2018) 297.
  • 135 X. Chen , S.S. Mao , Chem. Rev . 107 (2007) 2891.
  • 136 D. Kowalski, D. Kim, P. Schmuki , Nano Today 8 (2013) 235.
  • 137 D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, Mater. Sci. Eng . R Rep. 74 (2013) 377.
  • 138 Y. Wang, Y. He, Q. Lai, M. Fan, J. Environ. Sci. 26 (2014) 2139.
  • 139 C.L. Wong, Y.N. Tan, A.R. Mohamed, J. Environ. Manage. 92 (2011) 1669.
  • 140 T. Tenkyong, J.S.S. Mary, B. Praveen, K. Pugazhendhi, D. Sharmila, J.M. Shyla, Mater. Sci. Semicond. Process. 83 (2018) 150.
  • 141 C.T. Teodorescu-Soare, C. Catrinescu, M. Dobromir, G. Stoian, A. Arvinte, D. Luca, J. Electroanal. Chem. 823 (2018) 388.
  • 142 B.B. Çirak, S.M. Karadeniz, T. Kilinç, B. Caglar, A.E. Ekinci, H. Yelgin, M. Kürekçi, Ç. Çirak, Vacuum 144 (2017) 183.
  • 143 T. Hoseinzadeh, Z. Ghorannevis, M. Ghoranneviss, Appl. Phys. A 123 (2017) 436.
  • 144 F. Nasirpouri, I. Yousefi, E. Moslehifard, J. Khalil-Allafi, Surf. Coat. Technol . 315 (2017) 163.
  • 145 S. Chen, Q. Chen, M. Gao, S. Yan, R. Jin, X. Zhu, Surf. Coat. Technol . 321 (2017) 257.
  • 146 E. Zalnezhad, E. Maleki, S. Banihashemian, J. Park, Y.B. Kim, M. Sarraf, A. Sarhan, S. Ramesh, Mater. Res. Bull. 78 (2016) 179.
  • 147 L. Qin, Q. Chen , R. Lan, R. Jiang, X. Quan, B. Xu, F. Zhang, Y. Jia, J. Mater. Sci. Technol. 31 (2015) 1059.
  • 148 Z. Lockman, S. Sreekantan, S. Ismail, L. Schmidt-Mende, J.L. MacManus-Driscoll, J. Alloys Compd. 503 (2010) 359.
  • 149 W. Yu, Y. Zhang , X. Jiang, F. Zhang , Oral Dis. 16 (2010) 624.
  • 150 Z. Liu , X. Zhang , S. Nishimoto, T. Murakami, A. Fujishima, Environ. Sci. Technol. 42 (2008) 8547.
  • 151 H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, J. Phys. Chem. C 111 (2007) 7235.
  • 152 S. Bauer, S. Kleber, P. Schmuki , Electrochem. Commun. 8 (2006) 1321.
  • 153 Q. Cai, M. Paulose , O.K. Varghese , C.A. Grimes, J. Mater. Res. 20 (2005) 230.
  • 154 A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki , Electrochem. Commun . 7 (2005) 505.
  • 155 M. Andrade-Guel, L. Díaz-Jiménez, D. Cortés-Hernández, C. Cabello-Alvarado, C. Ávila-Orta, P. Bartolo-Pérez, P. Gamero-Melo, Bol. Soc. Esp. Ceram. V. 58 (2019) 171.
  • 156 J. Liang, J. Wang, K. Song, X. Wang, K. Yu, C. Liang, J. Rare Earths 37 (2019) 1.
  • 157 V. Singh, A. Rao, A. Tiwari, P. Yashwanth, M. Lal, U. Dubey, S. Aich, B. Roy, J. Phys. Chem . Solids 134 (2019) 262.
  • 158 E. Blanco, M. Domínguez, J. González-Leal, E. Márquez, J. Outón, M. Ramírez-del-Solar, Appl. Surf. Sci . 439 (2018) 736.
  • 159 R.G. Nair, S. Ojah, P.M. Kumar, S. Nikhil, S. Samdarshi, Mater. Lett. 221 (2018) 313.
  • 160 T.N. Singh, T.G. Devi, S.D. Singh, Nano-Struct. Nano-Obj. 11 (2017) 65.
  • 161 T. Balaganapathi, B. Kaniamuthan, S. Vinoth, P. Thilakan, Mater. Chem. Phys. 189 (2017) 50.
  • 162 D. Dastan, Appl. Phys. A 123 (2017) 699.
  • 163 F. Dejene, M. Onani, P. Tarus, Physica B Condens. Matter 480 (2016) 213.
  • 164 B. Tryba, M. Tygielska, C. Colbeau-Justin, E. Kusiak-Nejman, J. Kapica-Kozar, R. Wróbel, G. Żołnierkiewicz, N. Guskos, Mater. Res. Bull . 84 (2016) 152.
  • 165 B. Liu, J. Xiao, L. Xu, Y. Yao, B.F. Costa, V.F. Domingos, E.S. Ribeiro, F.-N. Shi, K. Zhou, J. Su, Int. J. Hydrog. Energy 40 (2015) 4945.
  • 166 Z. Li, Y. Zhu, J. Wang , Q. Guo, J. Li, Ceram. Int . 41 (2015) 9057.
  • 167 A.K. Tripathi, M.C. Mathpal, P. Kumar, M.K. Singh, M. Soler, A. Agarwal, J. Alloys Compd . 622 (2015) 37.
  • 168 S. Berger, R. Hahn, P. Roy, P. Schmuki , Phys. Status Solidi B 247 (2010) 2424.
  • 169 G. Cao, Nanostructures and nanomaterials: synthesis, properties and applications, World Sci. (2004).
  • 170 L.L. Hench, J.M. Polak, Science 295 (2002) 1014.
  • 171 M. Navarro, A. Michiardi, O. Castano, J. Planell, J. R. Soc. Interface 5 (2008) 1137.
  • 172 Y. Xia, Nat. Mater. 7 (2008) 758.
  • 173 Z.-G. Zhang, Z.-H. Li , X.-Z. Mao, W.-C. Wang, Cytotechnology 63 (2011) 437.
  • 174 K.S. Brammer , S. Oh, C.J. Cobb, L.M. Bjursten, H. van der Heyde, S. Jin, Acta Biomater . 5 (2009) 3215.
  • 175 S.A. Catledge, M.D. Fries, Y.K. Vohra, W.R. Lacefield, J.E. Lemons, S. Woodard, R. Venugopalanc, J. Nanosci. Nanotechnol. 2 (2002) 293.
  • 176 S. Minagar, C.C. Berndt, J. Wang , E. Ivanova, C. Wen, Acta Biomater . 8 (2012) 2875.
  • 177 A.W. Tan, B. Pingguan-Murphy, R. Ahmad, S.A. Akbar, J. Mater. Sci. 48 (2013) 8337.
  • 178 B. Zhang, D. Myers, G. Wallace, M. Brandt, P. Choong, Int. J. Mol. Sci. 15 (2014) 11878.
  • 179 S. Bauer , P. Schmuki , K. Von Der Mark, J. Park , Prog. Mater. Sci. 58 (2013) 261.
  • 180 R. Junker, A. Dimakis, M. Thoneick, J.A. Jansen , Clin. Oral Implants Res. 20 (2009) 185.
  • 181 H. Liu, T.J. Webster , Biomaterials 28 (2007) 354.
  • 182 L.E. McNamara, R.J. McMurray, M.J. Biggs, F. Kantawong, R.O. Oreffo , M.J. Dalby, J. Tissue Eng. 1 (2010) 120623.
  • 183 A. Wennerberg, T. Albrektsson, B. Andersson, J. Krol, Clin. Oral Implants Res. 6 (1995) 24.
  • 184 A. Wennerberg , C. Hallgren, C. Johansson, S. Danelli, Clin. Oral Implants Res. 9 (1998) 11.
  • 185 M. Fathi, B. Akbari, A. Taheriazam, Mater. Sci. Eng. C 103 (2019) 109743.
  • 186 M.F. Dias-Netipanyj, K. Cowden, L.S. Santos, S.C. Cogo, S. Elifio-Esposito, K.C. Popat, P. Soares, Mater. Sci. Eng. C 103 (2019) 109850.
  • 187 Y. Li, Y. You, B. Li, Y. Song, A. Ma, B. Chen, W. Han, C. Li, J. Hard Tissue Biol. 28 (2019) 13.
  • 188 W.-E. Yang, H.-H. Huang, Appl. Surf. Sci . 471 (2019) 1041.
  • 189 P. Agilan, N. Rajendran, Appl. Surf. Sci . 439 (2018) 66.
  • 190 D.P. Bhattarai, S. Shrestha, B.K. Shrestha, C.H. Park, C.S. Kim, Chem. Eng. J. 350 (2018) 57.
  • 191 R. Aguirre, M. Echeverry Rendón, D. Quintero, J.G. Castaño, M.C. Harmsen, S. Robledo, F. Echeverría E., J. Biomed. Mater. Res. A 106 (2018) 1341.
  • 192 N. Khoshnood, A. Zamanian, A. Massoudi , Mater. Lett . 185 (2016) 374.
  • 193 Y. Bai, I.S. Park, H.H. Park, M.H. Lee, T.S. Bae, W. Duncan, M. Swain, Surf. Interface Anal. 43 (2011) 998.
  • 194 J. Park , S. Bauer , K.A. Schlegel, F.W. Neukam, K. Von Der Mark , P. Schmuki , Small 5 (2009) 666.
  • 195 K. Das, S. Bose, A. Bandyopadhyay, J. Biomed. Mater. Res. A 90 (2009) 225.
  • 196 J. Kunze, L. Müller, J.M. Macak , P. Greil, P. Schmuki , F.A. Müller, Electrochim. Acta 53 (2008) 6995.
  • 197 K.C. Popat , L. Leoni, C.A. Grimes , T.A. Desai, Biomaterials 28 (2007) 3188.
  • 198 S. Oh , C. Daraio, L.H. Chen, T.R. Pisanic, R.R. Finones, S. Jin , J. Biomed. Mater. Res. A 78 (2006) 97.
  • 199 B. Burnat, J. Robak, A. Leniart, I. Piwoński, D. Batory, Ceram. Int . 43 (2017) 13735.
  • 200 B. Burnat , J. Robak , D. Batory , A. Leniart , I. Piwoński , S. Skrzypek, M. Brycht, Surf. Coat. Technol . 280 (2015) 291.
  • 201 J. Coreño, A. Martínez , O. Coreño, A. Bolarín, F. Sánchez, J. Biomed. Mater. Res. A 64 (2003) 131.
  • 202 M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura, J. Biomed. Mater. Res. A 64 (2003) 164.
  • 203 T. Peltola, M. Jokinen, H. Rahiala, M. Pätsi, J. Heikkilä, I. Kangasniemi, A. Yli-Urpo, J. Biomed. Mater. Res . 51 (2000) 200.
  • 204 E. Beltrán-Partida, B. Valdéz-Salas, A. Moreno-Ulloa, A. Escamilla, M.A. Curiel, R. Rosales-Ibáñez, F. Villarreal, D.M. Bastidas, J.M. Bastidas, J. Nanobiotechnology 15 (2017) 10.
  • 205 A.L. Escada, R.Z. Nakazato, A.P.R.A. Claro, Mater. Res. 20 (2017) 1282.
  • 206 K. Indira, U.K. Mudali, T. Nishimura, N. Rajendran , J. Bio Tribo-Corros. 1 (2015) 28.
  • 207 L. Liu, T.J. Webster , in “Orthopedic biomaterials”, B. Liu , T. Webster (Eds.), Springer (2017) 31.
  • 208 A. Rafieerad, E. Zalnezhad , A. Bushroa, A. Hamouda, M. Sarraf , B. Nasiri-Tabrizi, Surf. Coat. Technol . 265 (2015) 24.
  • 209 Y. Fu, A. Mo, Nanoscale Res. Lett. 13 (2018) 187.
  • 210 K.S. Brammer , S. Oh , C.J. Cobb , L.M. Bjursten , H. van der Heyde , S. Jin , Acta Biomater . 5 (2009) 3215.
  • 211 K.S. Brammer , C.J. Frandsen , S. Jin , Trends Biotechnol . 30 (2012) 315.
  • 212 B.S. Smith, S. Yoriya, T. Johnson, K.C. Popat , Acta Biomater . 7 (2011) 2686.
  • 213 C. Eriksson, H. Nygren , K. Ohlson, Biomaterials 25 (2004) 4759.
  • 214 R.A. Gittens, L. Scheideler, F. Rupp, S.L. Hyzy, J. Geis-Gerstorfer, Z. Schwartz, B.D. Boyan, Acta Biomater . 10 (2014) 2907.
  • 215 Z. Jia, P. Xiu, M. Li, X. Xu, Y. Shi, Y. Cheng, S. Wei, Y. Zheng, T. Xi, H. Cai, Biomaterials 75 (2016) 203.
  • 216 S. Rani, S.C. Roy, M. Paulose ,O.K. Varghese, G.K. Mor, S. Kim, S. Yoriya , T.J. LaTempa, C. Grimes, Phys. Chem. Chem. Phys. 12 (2010) 2780.
  • 217 U.F. Gunputh, H. Le, R.D. Handy, C. Tredwin, Mater. Sci. Eng. C 91 (2018) 638.
  • 218 H.J. Haugen, M. Monjo, M. Rubert, A. Verket, S.P. Lyngstadaas, J.E. Ellingsen, H.J. Rønold, J.C. Wohlfahrt, Acta Biomater . 9 (2013) 5390.
  • 219 R. Imani, M. Pazoki, D. Zupančič, M.E. Kreft, V. Kralj-Iglič , P. Veranič, A. Iglič , Protoplasma 253 (2016) 1439.
  • 220 D. Loca, I. Narkevica, J. Ozolins, Mater. Lett . 159 (2015) 309.
  • 221 F.A. Akin, H. Zreiqat, S. Jordan, M.B. Wijesundara, L. Hanley, J. Biomed. Mater. Res . 57 (2001) 588.
  • 222 F. Utku, E. Seckin, G. Goller, C. Tamerler, M. Urgen, Appl. Surf. Sci . 350 (2015) 62.
  • 223 D.W. Hutmacher, J.T. Schantz, C.X.F. Lam, K.C. Tan, T.C. Lim , J. Tissue Eng. Regen. Med . 1 (2007) 245.
  • 224 A.C. Jones, C.H. Arns, D.W. Hutmacher , B.K. Milthorpe, A.P. Sheppard, M.A. Knackstedt, Biomaterials 30 (2009) 1440.
  • 225 V. Karageorgiou, D. Kaplan, Biomaterials 26 (2005) 5474.
  • 226 T.S. Karande, J.L. Ong, C.M. Agrawal, Ann. Biomed. Eng. 32 (2004) 1728.
  • 227 H. Tiainen, D. Wiedmer, H.J. Haugen , J. Eur. Ceram. Soc . 33 (2013) 15.
  • 228 S. Bauer , J. Park , J. Faltenbacher, S. Berger , K. Von Der Mark , P. Schmuki , Integr. Biol. 1 (2009) 525.
  • 229 S. Bauer , J. Park , K. Von Der Mark , P. Schmuki , Acta Biomater . 4 (2008) 1576.
  • 230 A. Kar, K. Raja, M. Misra, Surf. Coat. Technol . 201 (2006) 3723.
  • 231 H. Tsuchiya , J.M. Macak , L. Müller , J. Kunze , F. Müller, P. Greil , S. Virtanen, P. Schmuki , J. Biomed. Mater. Res. A 77 (2006) 534.
  • 232 J. He, W. Zhou, X. Zhou, X. Zhong, X. Zhang , P. Wan, B. Zhu, W. Chen, J. Mater. Sci. Mater. Med. 19 (2008) 3465.
  • 233 H. Shi, R. Magaye, V. Castranova, J. Zhao, Part. Fibre Toxicol. 10 (2013) 15.
  • 234 R. Sawada, Y. Katou, H. Shibata , M. Katayama, T. Nonami, Int. J. Biomater. 2019 (2019) 7826373.
  • 235 B. Malhotra, M.A. Ali, Nanomaterials for biosensors: fundamentals and applications, Elsevier (2018) 183.
  • 236 V.D. Rani, L. Vinoth-Kumar, V. Anitha, K. Manzoor, M. Deepthy, V.N. Shantikumar, Acta Biomater . 8 (2012) 1976.
  • 237 C. von Wilmowsky, S. Bauer , R. Lutz, M. Meisel, F.W. Neukam , T. Toyoshima, P. Schmuki , E. Nkenke, K.A. Schlegel , J. Biomed. Mater. Res. B 89 (2009) 165.
  • 238 H. Zhang, Y. Sun, A. Tian, X.X. Xue , L. Wang, A. Alquhali, X. Bai, Int. J. Nanomedicine 8 (2013) 4379.

Publication Dates

  • Publication in this collection
    30 Oct 2020
  • Date of issue
    Oct-Dec 2020

History

  • Received
    05 Dec 2019
  • Reviewed
    20 May 2020
  • Reviewed
    03 June 2020
  • Accepted
    07 June 2020
location_on
Associação Brasileira de Cerâmica Av. Prof. Almeida Prado, 532 - IPT - Prédio 36 - 2º Andar - Sala 03 , Cidade Universitária - 05508-901 - São Paulo/SP -Brazil, Tel./Fax: +55 (11) 3768-7101 / +55 (11) 3768-4284 - São Paulo - SP - Brazil
E-mail: ceramica.journal@abceram.org.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Acessibilidade / Reportar erro