Acessibilidade / Reportar erro

Inoculation with arbuscular mycorrhizal fungus Rhizophagus clarus on tomato promotes increasing yield under organic farming inputs

Inoculação com fungo micorrízico arbuscular Rhizophagus clarus em tomateiro proporciona aumento de produtividade em cultivo orgânico

ABSTRACT:

Organic agriculture comprises farming practices that discard synthetic pesticides and fertilizers. Tomato production demands huge amounts of fertilizers and pesticides. Improving efficiency of the inputs allowed for organic tomato production is a challenge to upgrade yields. Thereby, we studied the effects of the inoculation of the arbuscular mycorrhizal fungus (AMF) Rhizophagus clarus, supplying rock thermophosphate and bioactivator, alone or associated, on tomato development and yield. The experiment was achieved in a greenhouse using undetermined tomato cv. BRS-Nagai sown in polystyrene trays and afterwards transplanted to pots. Treatments included R. clarus; thermophosphate (TH) (130 g/pot); bioactivator (PenergeticK® + Penergetic®) (BI); R. clarus + TH; R. clarus + BI; R. clarus + TH+ BI and TH + BI and control (CO). From the flowering onset, plant height, height of insertion of first truss, trusses space, length, and also the diameter and fresh weight of ripe fruits of the three first trusses were assessed. AMF colonization in the roots and macronutrients in leaves and petioles were also measured. Trusses spacing variable was affected by mycorrhiza and thermophosphate. R. clarus inoculation incremented 10 and 31.85% of fresh mass of ripe fruits and mass of ripe fruits per plant, respectively. Soluble solids contents in fruits and N, P and K in the leaves and petioles were similar among treatments. AMF colonization decreased on thermophosphate fertilized plants and increased in bioactivator treatment. Results showed that root inoculation with R. clarus promoted better plant development and yield and may be used as biological inoculant mostly on organic tomato production.

Key words:
agroecology; Solanum lycopersicu; organic inputs; nutritional management

RESUMO:

A agricultura orgânica preconiza práticas culturais que dispensam o uso de pesticidas e fertilizantes sintéticos. A tomaticultura convencional, por sua vez, demanda grandes quantidades de agroquímicos. Neste contexto, aumentar a eficiência de insumos permitidos em agricultura orgânica consiste em um desafio para a manutenção de altas produtividades. Este estudo objetivou investigar os efeitos, isoladamente e de interação, da inoculação de fungo micorrízico arbuscular (FMA) Rhizophagus clarus e da aplicação de termofosfato e de bioativador no desenvolvimento e na produtividade de tomateiros. O experimento foi conduzido em casa de vegetação com a cultivar BRS-Nagai, genótipo de hábito indeterminado do grupo saladete, semeado em bandejas de poliestireno e posteriormente transplantado para vasos. Os tratamentos contemplaram R. clarus; termofosfato (TH) (130g/vaso); bioativador (Penergetic K® + Penergetic®) (BI); R. clarus + TH; R. clarus + BI; R. clarus + TH+ BI; TH + BI e controle (CO). A partir do início do florescimento, foram mensuradas altura de plantas, altura do primeiro cacho, distância entre cachos e largura, comprimento e massa fresca de frutos maduros dos três primeiros cachos. Foram determinadas também a colonização micorrízica e os teores de macronutrientes em folhas e pecíolos. A distância entre cachos foi influenciada pela inoculação micorrízica e pela aplicação de termofosfato. R. clarus aumentou em 10% e 31.85% a massa fresca de frutos maduros e a massa fresca de frutos por planta respectivamente. Os teores de sólidos solúveis em frutos e de N, P e K em folhas e pecíolos foram similares para os tratamentos. A colonização micorrizica foi menor em plantas que receberam termofosfato e maior na presença do bioativador. Os resultados demonstraram melhor desenvolvimento e maior produtividade em plantas inoculadas com FMA, sugerindo que R. clarus apresenta-se como um potencial inoculante biológico para tomateiros, principalmente em cultivos orgânicos.

Palavras-chave:
agroecologia; Solanum lycopersicum; insumos orgânicos; manejo nutricional

INTRODUCTION

Organic farming prioritizes renewable inputs with leads to minor environmental impacts and, in a long term, food systems may converge to growing productivity and self-sufficiency (GLIESSMAN, 2016GLIESSMAN, S. Transforming food systems with agroecology. Agroecology and Sustainable Food Systems, v.40, n.3, p.187-189, 2016. Available from: <Available from: https://doi.org/10.1080/21683565.2015.1130765 >. Accessed: Oct. 15, 2022. doi: 10.1080/21683565.2015.1130765.
https://doi.org/10.1080/21683565.2015.11...
). Regulatory agencies and certifiers prohibit some inputs, mostly synthetic fertilizers and pesticides, and allow others such as manure, compost, rock powders, lime, microbial inoculants and biostimulants.

Root inoculation with arbuscular mycorrizal fungi (AMF) may enhances phosphorus and other low mobile nutrients acquisition by plants in the soil (ORTAS et al., 2013ORTAS, I. et al. Selection of arbuscular mycorrhizal fungi species for tomato seedling growth, mycorrhizal dependency and nutrient uptake. European Journal of Horticultural Science, v.78, n.5, p.209-218, 2013. Available from: <Available from: https://www.cabdirect.org/cabdirect/abstract/20133413851 >. Accessed: Oct. 15, 2022.
https://www.cabdirect.org/cabdirect/abst...
; WATTS-WILLIAMS & CAVAGNARO, 2014WATTS-WILLIAMS, S. J.; CAVAGNARO, T. R. Nutrient interactions and arbuscular mycorrhizas: a meta-analysis of a mycorrhiza-defective mutant and wild-type tomato genotype pair. Plant and Soil, v.384, n.1-2, p.79-92, 2014. Available from: <Available from: https://doi.org/10.1007/s11104-014-2140-7 >. Accessed: Oct. 15, 2022. doi: 10.1007/s11104-014-2140-7.
https://doi.org/10.1007/s11104-014-2140-...
), increases plant growth and yield (SILVA et al., 2017SILVA, M. B. et al. Response of arbuscular mycorrhizal fungal Rhizophagus clarus and the addition of humic substances in growth of tomato (Solanum lycopersicum L.). Scientia Agraria, v.18, n.3, p.123-130, 2017. Available from: <Available from: http://dx.doi.org/10.5380/rsa.v18i3.52888 >. Accessed: Oct. 15, 2022. doi: 10.5380/rsa.v18i3.52888.
http://dx.doi.org/10.5380/rsa.v18i3.5288...
) what is even more important in lower phosphorus availability soils such as highly weathered tropical soils, due to high adsorption and even lack in original rock (NOVAIS & SMITH, 1999NOVAIS, R. F.; SMYTH, T. J. Fósforo em solo e planta em condições tropicais. Universidade Federal de Viçosa 399 p. 1999. ).

Mycorrhiza fungi may establish symbiotic interaction with more than 90% of plant species (DU JARDIN, 2015DU JARDIN, P. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, v.196, p.3-14, 2015. Available from: <Available from: https://doi.org/10.1016/j.scienta.2015.09.021 >. Accessed: Oct. 15, 2022. doi: 10.1016/j.scienta.2015.09.021.
https://doi.org/10.1016/j.scienta.2015.0...
). AMF Rhizophagus clarus is a candidate to be fairly used as inoculant in crops due to high infectivity and low specificity (ADEMAR et al., 2015ADEMAR, P. et al. Rhizophagus clarus and phosphate alter the physiological responses of Crotalaria juncea cultivated in soil with a high Cu level. Applied Soil Ecology, v.91, p.37-47, 2015. Available from: <Available from: https://doi.org/10.1016/j.apsoil.2015.02.008 >. Accessed: Oct. 15, 2022. doi: 10.1016/j.apsoil.2015.02.008.
https://doi.org/10.1016/j.apsoil.2015.02...
; SATO et al., 2015SATO, T. et al. Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Science and Plant Nutrition, v.61, n.2, p.269-274, 2015. Available from: <Available from: https://doi.org/10.1080/00380768.2014.993298 >. Accessed: Oct. 15, 2022. doi: 10.1080/00380768.2014.993298.
https://doi.org/10.1080/00380768.2014.99...
; URCOVICHE et al., 2015URCOVICHE, R. C. et al. Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Industrial Crops and Products, v.67, p.103-107, 2015. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2015.01.016 >. Accessed: Oct. 15, 2022. doi: 10.1016/j.indcrop.2015.01.016.
https://doi.org/10.1016/j.indcrop.2015.0...
; CELY et al., 2016CELY, M. V. T. et al. Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) Increase Yield of Soybean and Cotton under Field Conditions. Frontiers in Microbiology, v.7, n.May, p.1-9, 2016. Available from: <Available from: https://doi.org/10.3389/fmicb.2016.00720 >. Accessed: Oct. 15, 2022. doi: 10.3389/fmicb.2016.00720.
https://doi.org/10.3389/fmicb.2016.00720...
; SALGADO et al., 2016SALGADO, F. H. M. et al. Arbuscular mycorrhizal fungi and mycorrhizal stimulant affect dry matter and nutrient accumulation in bean and soybean plants. Pesquisa Agropecuária Tropical, v.46, n.4, p.367-373, 2016. Available from: <Available from: https://doi.org/10.1590/1983-40632016v4640282 >. Accessed: Oct. 15, 2022. doi: 10.1590/1983-40632016v4640282.
https://doi.org/10.1590/1983-40632016v46...
; KOYAMA et al., 2017KOYAMA, A. et al. An empirical investigation of the possibility of adaptability of arbuscular mycorrhizal fungi to new hosts. Mycorrhiza, v.27, n.6, p.553-563, 2017. Available from: <Available from: https://doi.org/10.1007/s00572-017-0776-x >. Accessed: Oct. 15, 2022. doi: 10.1007/s00572-017-0776-x.
https://doi.org/10.1007/s00572-017-0776-...
).

Tomato production in organic and even conventional agricultural systems demands large amount of fertilizers. AMF may improve efficiency in the use fertilizers and even decreases the burden. In tomato crops, AMF have been reported to control root diseases (POZO et al., 2002POZO, M. J. et al. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, v.53, n.368, p.525-534, 2002. Available from: <Available from: https://doi.org/10.1093/jexbot/53.368.525 >. Accessed: Oct. 15, 2022. doi: 10.1093/jexbot/53.368.525.
https://doi.org/10.1093/jexbot/53.368.52...
); improving phosphorus content in plant (FINZI et al., 2017FINZI, R. R. et al. Agronomic performance of mini-tomato hybrids from dwarf lines. Ciência e Agrotecnologia, v.41, n.1, p.15-21, 2017. Available from: <Available from: https://doi.org/10.1590/1413-70542017411021416 >. Accessed: Oct. 15, 2022. doi: 10.1590/1413-70542017411021416.
https://doi.org/10.1590/1413-70542017411...
); root and shoot dry weight (LEY-RIVAS et al., 2015LEY-RIVAS, J. F. et al. Efecto de cuatro especies de hongos micorrizógenos arbusculares en la producción de frutos de tomate. Agronomía Costarricense, v.39, n.1, p.47-59, 2015. Available from: <Available from: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0377-94242015000100004 >. Accessed: Oct. 15, 2022.
https://www.scielo.sa.cr/scielo.php?scri...
); plant height and yield (PÉREZ & MARTÍNEZ, 2012PÉREZ, Y. M.; MARTÍNEZ A. G. F. Efecto a la biofertilización com hongos micorrízicos arbusculares (HMA) en el cultivo del tomate em condiciones de estrés abiótico. Cultivos Tropicales, v.33, n.4, p.40-46. 2012. Available from: <Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362012000400005 >. Accessed: Oct. 15, 2022.
http://scielo.sld.cu/scielo.php?script=s...
) and stem diameter (KILE et al., 2013KILE, P. M. A., et al. Uso de hongos micorrizógenos vesículo arbusculares (HMVA) en la producción de tomate (Solanum lycopersicum, L.) Centro Agrícola, v.40, n.3, p.5-10. 2013. Available from: <Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362015000100007 >. Accessed: Oct. 15, 2022.
http://scielo.sld.cu/scielo.php?script=s...
).

Rock phosphate and bioactivators have been used in organic farming in Brazil, but we did not found reports about studies on the efficiency of these inputs, lonely or even associated with other inputs, on tomato yield and/or plant growth. Thereby we evaluated the inoculation of R clarus, rock thermophosphate and bioactivator, alone or associated, on tomato growth and yield.

MATERIALS AND METHODS

The experiment was carried out in a greenhouse in Londrina, PR, Brazil (230 23’S e 510 11 W); subtropical (Cfa) weather (Köppen).

Undetermined tomato cv. BRS-Nagai was sown in polystyrene trays filled with commercial substrate (MecPlant®). The same substrate was also mixed with R. clarus inocula (spores, mycelia and colonized roots) that was acquired by Laboratory of Microbial Ecology (Universidade Estadual de Londrina, Londrina, PR, Brazil), providing a concentration of 50 spores per pit tray. After 32 days of sowing, seedlings were transplanted to pots [10 dm3 filled with red eutroferric latossol mixed with sand (2:1)] (Sistema Brasileiro de Classificação de Solos, [s.d.])(Santos et al 2014). Chemical analysis of the mixture characterized pH (CaCl2) = 5.4; Ca = 2.36 cmolc dm-3; Mg = 0.75 cmolc dm-3; Al = 0; H + Al = 3.42 cmolc dm-3; K = 0.18 cmolc dm-3; C = 5.29 g kg-1; MO = 9.1 g kg-1 and P = 6.7 mg dm-3. Lime was applied to improve soil base saturation until 80%. Before transplanting, 105 g of Ekosil® (K2O = 8,0%; Si = 25,0%) fertilizer plus 1 kg of organic manure were also added to each pot. Organic manure composition was pH (CaCl2) = 7.3; Ca = 13.28 cmolc dm-3; Mg = 7.96 cmolc dm-3; Al = 0; H + Al = 2.19 cmolc dm-3; K = 8.33 cmolc dm-3; C = 60.46 g kg-1; MO = 104 g kg-1 e P = 2.868 mg dm-3. Ca and Mg were determined by titration with EDTA and Al by titration with NaOH. Potential acidity was estimated by SMP pH. P and K were extracted using a Melich-1 extracting solution, P was determined by spectrophotometry and K by flame photometry. Organic carbon was quantified using the Walkley-Black method.

Treatments were R. clarus; Yoorin® thermophosphate (TH) (130 g/pot); bioativador (PenergeticK® + PenergeticP®) (BI) (1 g L-1); R. clarus + TH; R. clarus + BI; R. clarus + TH+ BI and TH + BI and non-treated plant was considered as control (CO). PenergeticK® and PenergeticP® are composed of bentonite clays which are subjected to application of electric and magnetic fields (BRITO et al., 2012BRITO, O. R. et al. Use of penergetic products P and K in the snap bean production. Annual Report of the Bean Improvement Cooperative, v.55, p.279-280, 2012. Available from: <Available from: https://www.academia.edu/download/30882414/BIC_2012_Annual_Report.pdf#page=314 >. Accessed: Oct. 15, 2022.
https://www.academia.edu/download/308824...
).

From the flowering onset, organic Bokashi (N = 37.67 g kg-1; P = 14.36 g kg-1; K = 21.01 g kg-1; Ca = 12.00 g kg-1; Mg = 8.80 g kg-1) and mineral Potamag® (K2O = 22,0%; Mg = 11,0%; S = 22,0%) fertilizers were weekly applied in the soil and boric acid by fertigation, according to the cultivar demand. Phytosanitary management was achieved by spraying copper and sodium bicarbonate as fungicides, neem and Bacillus thuringiensis insecticides according to Brazilian legislation of organic agriculture (BRASIL, 2014BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução normativa nº 17 de 18 de Junho de 2014. Estabelece o regulamento técnico para sistemas orgânicos de produção, bem como as listas de substâncias e práticas permitidas para uso nos sistemas orgânicos de produção. Diário Oficial da República Federativa do Brasil: Brasília, 2014. Available from: <Available from: https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/organicos/legislacao/portugues/instrucao-normativa-no-17-de-18-de-junho-de-2014.pdf/view >. Accessed: Oct. 15, 2022.
https://www.gov.br/agricultura/pt-br/ass...
).

Plants were grown on a single stake (single stem) supported by bamboo stakes and pruned (removal of apical meristem) after emission of the 4th truss. Flowers of the 4th truss were also removed (STRECK et al., 1998STRECK, N. A. et al. Effect of plant density and drastic prunning on tomato yeld inside a plastic greenhouse. Pesquisa Agropecuária Brasileira, v.33, n.7, p.1105-1112, 1998. Available from: <Available from: https://core.ac.uk/download/pdf/228700968.pdf >. Accessed: Oct. 15, 2022.
https://core.ac.uk/download/pdf/22870096...
; GUIMARÃES et al., 2007GUIMARÃES, M. DE A. et al. Produção e sabor dos frutos de tomateiro submetidos a poda apical e de cachos florais. Horticultura Brasileira, v.25, n.2, p.265-269, 2007. Available from: <Available from: https://doi.org/10.1590/S0102-05362007000200027 >. Accessed: Oct. 15, 2022. doi: 10.1590/S0102-05362007000200027.
https://doi.org/10.1590/S0102-0536200700...
) .

From the flowering onset, evaluations comprised plant height, height of insertion of first truss, trusses space, length, diameter and fresh weight of ripe fruits (picking point: 60-90% of surface red) of the three first trusses. Fruits out of commercial standards (diameter inferior to 4 cm) (BRASIL, 1995BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Portaria nº 553 de 30 de agosto de 1995. Estabelece norma de identidade, qualidade, acondicionamento e embalagem de tomate para fins de comercialização. Diário Oficial da República Federativa do Brasil: Brasília, 1995. Available from: <Available from: https://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalMapa&chave=1920192566 >. Accessed: Oct. 15, 2022.
https://sistemasweb.agricultura.gov.br/s...
) and damaged fruit were discarded (not included in the yield).

To evaluate the AM colonization, samples of secondary roots was stained with Trypan blue (KOSKE & GEMMA, 1989KOSKE, R. E.; GEMMA, J. N. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, v.92, (n.4): p.486-488, 1989. Available from: <Available from: https://doi.org/10.1016/S0953-7562(89)80195-9 >. Accessed: Oct. 15, 2022. doi: 10.1016/S0953-7562(89)80195-9.
https://doi.org/10.1016/S0953-7562(89)80...
) and the determination of AM colonization (%) was carried using grid-line method (GIOVANNETTI & MOSSE, 1980GIOVANNETTI, M.; MOSSE, B. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytol, v.84: p.489-500, 1980. Available from: <Available from: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x >. Accessed: Oct. 15, 2022. doi: 10.1111/j.1469-8137.1980.tb04556.x.
https://doi.org/10.1111/j.1469-8137.1980...
). Shoot and root dry weight were also determined after incubated in forced air drying oven until constant weight.

Macronutrients (N, P and K) were determined in dry leaves and petioles after ground in a mill. Nitrogen was determined by sulfuric digestion and distillation in a Kjeldal system and phosphorus and potassium were determined by nitropercloric digestion (SILVA, 2009SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Solos. p. 191-233, 2009. ).

The experimental design was randomized block with three-factor arranged in mycorrhiza (with and without) X thermophosphate (with and without) X bioactivator (with and without), with six replicates and 48 pots. Data were submitted to analysis of variance after testing the normality and variance homogeneity assumptions (Shapiro-Wilk and Bartlett, respectively). Means were compared using Fisher F test (P < 0.05). Analyses were achieved using software R (R CORE TEAM, 2018R CORE TEAM, R. A language and environment for statistical computing. R Foundation for Statiscal Computing. Vienna, 2018. Available from: <Available from: https://www.R-project.org >. Accessed: Oct. 15, 2022
https://www.R-project.org...
).

RESULTS

Vegetative and productive traits

Similar values for shoot and root dry weight, plant height and height of first truss were observed among treatments. However, trusses spacing variable was affected by mycorrhiza and thermophosphate (Table 1). Reduction of the distance between trusses was observed for plants inoculated with mycorrhiza (9.59%) and those fertilized with termophosphate (8.36%). R. clarus inoculation enhanced fresh mass of ripe fruits and mass of ripe fruits per plant (10% and 31.85%, respectively) (Table 2).

Table 1
Shoot (SDW) and root dry weight (RDW); plant height (PHE); height of first truss (H1T) and mean distance between trusses (DBT) in tomato cultivated under different nutritional managements. Londrina, 2018.
Table 2
Number of ripe fruits per plant (NFPP), fresh mass of ripe fruits (FMRF) and fresh mass of ripe fruits per plant (FMPP) of tomato cultivated under different fertilization systems. Londrina, 2018.

Mycorrhizal colonization, macronutrients in leaves and soluble solids in fruits contents

Soluble solids in fruits and N, P and K in the leaves and petioles were similar among treatments. The AMF colonization (Figure 1) was affected by thermophosphate and bioactivator (Table 3).

Figure 1
Structures of R. clarus in tomato root.

Table 3
Mycorrhizal colonization (%); N, P, K contents (g kg-1) in leaves and petioles and contents of soluble solids (ºBrix) in tomatoes cultivated under different nutritional managements. Londrina, 2018.

We observed reduction of AMF colonization in treatments using thermophosphate, compared to those who did not receive the phosphate fertilizer (60.75 vs. 71.77%, respectively). In contrast, higher AMF colonization in bioactivator treated than untreated plants were found (71.89 vs. 60.62%, respectively).

DISCUSSION

Distance between trusses was reduced in treatments that received mycorrhizal inoculation and thermophosphate (Table 1). In tomato crops, the balance between vegetative and reproductive development is crucial for tomato yield, which may decreased nutrient drain through vegetable tissues (PUIATTI et al., 2010PUIATTI, M. et al. Fisiologia do Tomateiro. Governo do Estado do Espírito Santo p. 85-119, 2010. Available from: <Available from: https://www.alice.cnptia.embrapa.br/alice/handle/doc/865552 >. Accessed: Oct. 15, 2022.
https://www.alice.cnptia.embrapa.br/alic...
). Fruit are the main drains of photoassimilates produced by leaves (GUIMARÃES et al., 2007GUIMARÃES, M. DE A. et al. Produção e sabor dos frutos de tomateiro submetidos a poda apical e de cachos florais. Horticultura Brasileira, v.25, n.2, p.265-269, 2007. Available from: <Available from: https://doi.org/10.1590/S0102-05362007000200027 >. Accessed: Oct. 15, 2022. doi: 10.1590/S0102-05362007000200027.
https://doi.org/10.1590/S0102-0536200700...
) and the relation source/drain is vital of vegetative development and reproductive tissues (OSORIO et al., 2014OSORIO, S. et al. An update on source-to-sink carbon partitioning in tomato. Frontiers in Plant Science, v.5, n.October, p.1-11, 2014. Available from:<Available from:https://doi.org/10.3389/fpls.2014.00516 >. Accessed: Oct. 15, 2022. doi: 10.3389/fpls.2014.00516.
https://doi.org/10.3389/fpls.2014.00516...
).

Internodal spacing is directly related with light absorption and energetic efficiency (SARLIKIOTI et al., 2011SARLIKIOTI, V. et al. How plant architecture affects light absorption and photosynthesis in tomato: Towards an ideotype for plant architecture using a functional structural plant model. Annals of Botany, v.108, n.6, p.1065-1073, 2011. Available from: <Available from: https://doi.org/10.1093/aob/mcr221 >. Accessed: Oct. 15, 2022. doi: 10.1093/aob/mcr221.
https://doi.org/10.1093/aob/mcr221...
). Variation on this variable may indicate differences in nutritional balance according to treatments. Higher internodal spacing may favor light penetration in crop dossel. In opposition, excessive high internodal spacing may bring about plant stapling and yield reduction (PAPADOPOULOS & ORMROD, 1990PAPADOPOULOS, A. P.; ORMROD, D. P. Plant Spacing Effects on Yield of the Greenhouse Tomato. Canadian Journal of Plant Science, v.70, n.2, p.565-573, 1990. Available from: <Available from: https://doi.org/10.4141/cjps91-040 >. Accessed: Oct. 15, 2022. doi: 10.4141/cjps91-040.
https://doi.org/10.4141/cjps91-040...
) due to allocation of photoassimilates to stem elongation rather than fruit growth (FINZI et al., 2017FINZI, R. R. et al. Agronomic performance of mini-tomato hybrids from dwarf lines. Ciência e Agrotecnologia, v.41, n.1, p.15-21, 2017. Available from: <Available from: https://doi.org/10.1590/1413-70542017411021416 >. Accessed: Oct. 15, 2022. doi: 10.1590/1413-70542017411021416.
https://doi.org/10.1590/1413-70542017411...
). Reported prescription of nitrogen amounts for BRS-Nagai cultivar are, in general, lesser than other cultivars due to its highly efficiency in nitrogen usage (VILLAS-BÔAS & JACON, 2016VILLAS-BÔAS, R. L.; JACON, C. P. R. Recomendação de adubação baseada em curvas de acúmulo de nutrientes para as cultivares de tomate BRS Nagai e BRS Zamir. Unesp (Botucatu), 2016. ). Besides unbalanced development, N above real needs enhances proportion of green fruits (WARNER et al., 2004WARNER, J. et al. Effects of nitrogen fertilization on fruit yield and quality of processing tomatoes. Canadian Journal of Plant Science, v.84, n.3, p.865-871, 2004. Available from: <Available from: https://doi.org/10.4141/P03-099 >. Accessed: Oct. 15, 2022. doi: 10.4141/P03-099.
https://doi.org/10.4141/P03-099...
; ELIA & CONVERSA, 2012ELIA, A.; CONVERSA, G. Agronomic and physiological responses of a tomato crop to nitrogen input. European Journal of Agronomy, v.40, p.64-74, 2012. Available from: <Available from: https://doi.org/10.1016/j.eja.2012.02.001 >. Accessed: Oct. 15, 2022. doi: 10.1016/j.eja.2012.02.001.
https://doi.org/10.1016/j.eja.2012.02.00...
;), delay flowering and fructification (RASHID et al., 2016RASHID, A. et al. Effect of row spacing and nitrogen levels on the growth and yield of tomato under walk-in polythene tunnel condition. Pure and Applied Biology, v.5, n.3, p.426-438, 2016. Available from: <Available from: http://dx.doi.org/10.19045/bspab.2016.50055 >. Accessed: Oct. 15, 2022. doi: 10.19045/bspab.2016.50055.
http://dx.doi.org/10.19045/bspab.2016.50...
) and decreases fruit quality (BÉNARD et al., 2009BÉNARD, C. et al. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. Journal of Agricultural and Food Chemistry, v.57, n.10, p.4112-4123, 2009. Available from: <Available from: https://doi.org/10.1021/jf8036374 >. Accessed: Oct. 15, 2022. doi: 10.1021/jf8036374.
https://doi.org/10.1021/jf8036374...
). Besides the extensive reports on the positive effects on P usage efficiency, AMF may also affect N metabolism of plant. Previously, tomato inoculated with Glomus mossae increased nitrate reductase and the glutamine synthetase activity and N content (DI MARTINO et al., 2019DI MARTINO, C. et al. Influence of tomato plant mycorrhization on nitrogen metabolism, growth and fructification on P- limited soil. Journal of Plant Growth Regulation, 2019. Available from: <Available from: https://doi.org/10.1007/s00344-019-09923-y >. Accessed: Oct. 15, 2022. doi: 10.1007/s00344-019-09923-y.
https://doi.org/10.1007/s00344-019-09923...
). The inoculation with R. clarus, may be affecting N content and led balance between vegetative/reproductive development as indicated by lesser trusses spacing.

R. clarus inoculation also increased the fresh mass of ripe fruits both individually and per plant (Table 2). These results corroborated previous studies in which increases of 25% tomato yields were found in plants inoculated with AM fungi in organic farming system (BOWLES et al., 2016BOWLES, T. M. et al. Effects of arbuscular mycorrhizae on tomato yeld, nutrient uptake, water relations and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, v.566-567, p.1223-1234, 2016. Available from: <Available from: https://doi.org/10.1016/j.scitotenv.2016.05.178 >. Accessed: Oct. 15, 2022. doi: 10.1016/j.scitotenv.2016.05.178.
https://doi.org/10.1016/j.scitotenv.2016...
) and 50% in a low nutrient soil (DI MARTINO et al., 2019DI MARTINO, C. et al. Influence of tomato plant mycorrhization on nitrogen metabolism, growth and fructification on P- limited soil. Journal of Plant Growth Regulation, 2019. Available from: <Available from: https://doi.org/10.1007/s00344-019-09923-y >. Accessed: Oct. 15, 2022. doi: 10.1007/s00344-019-09923-y.
https://doi.org/10.1007/s00344-019-09923...
). Increasing tomato yields under low nutrient soil was also reported when AMF was associated with plant growth promoting bacteria (Pseudomonas spp.) (BONA et al., 2018BONA, E. et al. Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Scientia Horticulturae, v.234, p.160-165, 2018. Available from: <Available from: https://doi.org/10.1016/j.scienta.2018.02.026 >. Accessed: Oct. 15, 2022. doi: 10.1016/j.scienta.2018.02.026.
https://doi.org/10.1016/j.scienta.2018.0...
). The inoculation of AMF fungi also allowed to decrease the amount of fertilizers without reducing productivity (ZIANE et al., 2017ZIANE, H. et al. Effects of arbuscular mycorrhizal fungi and fertilization levels on industrial tomato growth and production. International Journal of Agriculture and Biology, v.19, p.341-347, 2017. Available from: <Available from: https://www.researchgate.net/publication/314322156_Effects_of_Arbuscular_Mycorrhizal_Fungi_and_Fertilization_Levels_on_Industrial_Tomato_Growth_and_Production >. Accessed: Oct. 15, 2022. doi: 10.17957/IJAB/15.0287.
https://www.researchgate.net/publication...
). The AMF R. clarus was also successfully used to improve crop performance and the effectiveness of fertilizer applied on soybean crop and to reduce amounts of fertilizers in cotton (CELY et al., 2016CELY, M. V. T. et al. Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) Increase Yield of Soybean and Cotton under Field Conditions. Frontiers in Microbiology, v.7, n.May, p.1-9, 2016. Available from: <Available from: https://doi.org/10.3389/fmicb.2016.00720 >. Accessed: Oct. 15, 2022. doi: 10.3389/fmicb.2016.00720.
https://doi.org/10.3389/fmicb.2016.00720...
; BARAZETTI et al., 2019BARAZETTI, A. R. et al. Formulations of arbuscular mycorrhizal fungi inoculum applied to soybean and corn plants under controlled filed conditions. Applied Soil Ecology, v.142, p.25-33, 2019. Available from: <Available from: https://doi.org/10.1016/j.apsoil.2019.05.015 >. Accessed: Oct. 15, 2022. doi: 10.1016/j.apsoil.2019.05.015.
https://doi.org/10.1016/j.apsoil.2019.05...
).

Macronutrients in leaves and petioles did not vary significantly between treatments probably due to nutrients drained by tomato fruits (55%, 54% and 56% for N, P and K, respectively) from the vegetative portion (FAYAD et al., 2002FAYAD, J. A. et al. Absorção de nutrientes pelo tomateiro cultivado sob condições de campo e de ambiente protegido. Hortic Bras, v.20, p.90-94, 2002. Available from: <Available from: https://doi.org/10.1590/S0102-05362002000100017 >. Accessed: Oct. 15, 2022. doi: 10.1590/S0102-05362002000100017.
https://doi.org/10.1590/S0102-0536200200...
).

Significant reductions on mycorrhizal colonization were observed for treatments fertilized with thermophosphate (Table 3). Despite the low water solubility, previous studies showed that thermophosphates can have high agronomic efficiency when compared to soluble sources of phosphorus, enhancing nutrient available to plants in short periods of time (MACHADO et al., 1983MACHADO, M. O. et al. Calcário e fontes e doses de fósforo: influência no rendimento da soja e na química do solo Pelotas (Alfissolo). Pesquisa Agropecuária Brasileira, v.18, n.7, p.721-727, 1983. Available from: <Available from: https://core.ac.uk/download/pdf/228712649.pdf >. Accessed: Oct. 15, 2022.
https://core.ac.uk/download/pdf/22871264...
). Otherwise, supplying plants with soluble phosphorus sources decreases AMF root colonization (WATTS-WILLIAMS & CAVAGNARO, 2012WATTS-WILLIAMS, S. J.; CAVAGNARO, T. R. Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biology and Fertility of Soils, v.48, n.3, p. 285-294, 2012. Available from: <Available from: https://doi.org/10.1007/s00374-011-0621-x >. Accessed: Oct. 15, 2022. doi: 10.1007/s00374-011-0621-x.
https://doi.org/10.1007/s00374-011-0621-...
; YANG et al., 2014YANG, G. et al. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology, v.102, n.4, p.1072-1082, 2014. Available from: <Available from: https://doi.org/10.1111/1365-2745.12249 >. Accessed: Oct. 15, 2022. doi: 10.1111/1365-2745.12249.
https://doi.org/10.1111/1365-2745.12249...
; KONVALINKOVÁ et al., 2017KONVALINKOVÁ, T. et al. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant and Soil, v.419, n.1-2, p.319-333, 2017. Available from:<Available from:https://link.springer.com/article/10.1007/s11104-017-3350-6 >. Accessed: Oct. 15, 2022. doi: 10.1007/s11104-017-3350-6.
https://link.springer.com/article/10.100...
) while low availability in the soil may increment AMF colonization (BREUILLIN et al., 2010BREUILLIN, F. et al. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrid and represses genes involved in mycorrhizal functioning. The Plant Journal, v.64, p.1002-1017, 2010. Available from: <Available from: https://doi.org/10.1111/j.1365-313X.2010.04385.x >. Accessed: Oct. 15, 2022. doi: 10.1111/j.1365-313X.2010.04385.x.
https://doi.org/10.1111/j.1365-313X.2010...
) and enhance root exudation (CARVALHAIS et al., 2010CARVALHAIS, L. C. Root exudation of sugars, amino acids and organic acids by corn as affected by nitrogen, phosphorus, potassium, and iron deficiency. Journal of Plant Nutrition and Soil Science, v.104, p.3-11, 2010. Available from: <Available from: https://www.researchgate.net/publication/224003453_Root_exudation_of_sugars_amino_acids_and_organic_acids_by_maize_as_affected_by_nitrogen_phosphorous_potassium_iron_deficiency >. Accessed: Oct. 15, 2022. doi: 10.1016/j.rhisph.2018.10.002.
https://www.researchgate.net/publication...
).

Penergetic bioactivator improved microbial activity and AMF colonization (Table 3) as observed previously which incremented yields on sugar beet root, common bean, soybean crops and coffee yields (JAKIENE et al., 2009JAKIENE, E. et al. Fertilization of sugar beetroot with ecological fertilizers. Agronomy Research, v.7, n.Special Issue I, p.269-276, 2009. Available from: <Available from: https://www.cabdirect.org/cabdirect/abstract/20093231975 >. Accessed: Oct. 15, 2022.
https://www.cabdirect.org/cabdirect/abst...
; COBUCCI et al., 2015COBUCCI, T. et al. Adubação fosfatada e aplicação de Penergetic na produtividade do feijoeiro comum. Revista Agrarian, v.8, n.30, p.358-368, 2015. Available from: <Available from: https://www.alice.cnptia.embrapa.br/handle/doc/1045072 >. Accessed: Oct. 15, 2022.
https://www.alice.cnptia.embrapa.br/hand...
; SOUZA et al., 2017SOUZA, A. A. de. et al. Growth and yield of soybean with penergetic application. Scientia agraria, v.18, n.4, p.95-98, 2017. Available from: <Available from: http://dx.doi.org/10.5380/rsa.v18i4.52886 >. Accessed: Oct. 15, 2022. doi: 10.5380/rsa.v18i4.52886.
http://dx.doi.org/10.5380/rsa.v18i4.5288...
; MANTOVANI & FLORENTINO, 2018MANTOVANI, J. R.; FLORENTINO, L. A. Effect of cover crops and bioactivators in coffee production and chemical properties of soil. Coffee Science, v.13, n.4, p.559-567, 2018. Available from: <Available from: http://sbicafe.ufv.br/handle/123456789/11127 >. Accessed: Oct. 15, 2022.
http://sbicafe.ufv.br/handle/123456789/1...
). However, other studies reported lack of increment in productivity in mayze and soybean yields (ALOVISI et al., 2017ALOVISI, A. M. T. et al. Atributos de fertildade do solo e produtividade de milho e soja influenciados pela rochagem. Acta Iguazu, v.6, n.5, p.57-68, 2017. Available from: <Available from: https://saber.unioeste.br/index.php/actaiguazu/article/view/18470 >. Accessed: Oct. 15, 2022.
https://saber.unioeste.br/index.php/acta...
), and Urochloa brizantha pastures (SILVA et al., 2015). AMF colonization varied among treatments between 60.7% e 71.9%. These values were similar to those obtained in previous studies using R. clarus inoculation (LEY-RIVAS et al., 2015LEY-RIVAS, J. F. et al. Efecto de cuatro especies de hongos micorrizógenos arbusculares en la producción de frutos de tomate. Agronomía Costarricense, v.39, n.1, p.47-59, 2015. Available from: <Available from: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0377-94242015000100004 >. Accessed: Oct. 15, 2022.
https://www.scielo.sa.cr/scielo.php?scri...
) and lesser than other ones in which tomato was inoculated with G. cubense (PÉREZ & MARTÍNEZ, 2012PÉREZ, Y. M.; MARTÍNEZ A. G. F. Efecto a la biofertilización com hongos micorrízicos arbusculares (HMA) en el cultivo del tomate em condiciones de estrés abiótico. Cultivos Tropicales, v.33, n.4, p.40-46. 2012. Available from: <Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362012000400005 >. Accessed: Oct. 15, 2022.
http://scielo.sld.cu/scielo.php?script=s...
), G. mosseae e G. intraradices (POZO et al., 2002POZO, M. J. et al. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, v.53, n.368, p.525-534, 2002. Available from: <Available from: https://doi.org/10.1093/jexbot/53.368.525 >. Accessed: Oct. 15, 2022. doi: 10.1093/jexbot/53.368.525.
https://doi.org/10.1093/jexbot/53.368.52...
).

CONCLUSION

Tomato inoculated with AMF R. clarus improved tomato yield and decreased trusses spacing suggesting a balance development under cultivation with fertilizers allowed in organic agriculture. Thermophosphate inhibited and bioactivator improved AMF root colonization.

ACKNOWLEDGEMENTS

The first author acknowledges the Agrocinco Company for the donation of BRS-Nagai hybrid seeds.

REFERENCES

  • CR-2022-0585.R1

Edited by

Editors: Leandro Souza da Silva (0000-0002-1636-6643) Frederico Costa Beber Vieira (0000-0001-5565-7593)

Publication Dates

  • Publication in this collection
    05 Aug 2024
  • Date of issue
    2024

History

  • Received
    24 Oct 2022
  • Accepted
    10 Jan 2024
  • Reviewed
    02 July 2024
Universidade Federal de Santa Maria Universidade Federal de Santa Maria, Centro de Ciências Rurais , 97105-900 Santa Maria RS Brazil , Tel.: +55 55 3220-8698 , Fax: +55 55 3220-8695 - Santa Maria - RS - Brazil
E-mail: cienciarural@mail.ufsm.br