ABSTRACT:
The purpose of this review was to address the applicability of nanotechnology in veterinary medicine, with an emphasis on research in Brazil from 2013 to 2020. Firstly, we introduced to the general aspects of applicability of nanotechnology in veterinary medicine, and lately we pointed the research involving nanoscience performed in Brazil, in the studied period. Nanotechnology is the field of science that has the capacity to organize matter in nanoscale structures (1 to 100 nm), enabling innovations in different areas including biotechnology, agriculture, disease diagnosis, food and clothing industry, electronics, and pharmacological therapies. In veterinary medicine, several studies are being carried out in the world, mainly in the areas that involve search of new treatment options and the development of immunotherapy, as well as in the diagnosis of diseases. In Brazil, it is clear that the use of nanotechnology in veterinary medicine is still incipient, but it can be considered a growing area. In addition, several points have to be reflected and researched, including some adverse effects and implications to validate the safe use of nanotechnology in veterinary medicine. Therefore, this review highlighted the nanotechnology as a promise alternative in the current context of Brazilian technological innovation involving animal health, as well as a possible diagnostic tool and highlighting its potential therapeutic use in disease control in veterinary medicine. Regarding future perspectives, we believed that greater investment in science and technology could contribute to the advancement and strengthening of nanotechnology in Brazil.
Key words:
nanoscience; technological innovation; animal health; diagnostic; treatment
RESUMO:
O objetivo desta revisão foi abordar a aplicabilidade da nanotecnologia na medicina veterinária, com ênfase nas pesquisas no Brasil de 2013 a 2020. Primeiramente, apresentam-se os aspectos gerais da aplicabilidade da nanotecnologia em medicina veterinária e, posteriormente, apontam-se as pesquisas envolvendo nanociência realizadas no Brasil, no período estudado. A nanotecnologia é o campo da ciência capaz de organizar a matéria em estruturas de nanoescala (1 a 100 nm), permitindo inovações em diferentes áreas, incluindo biotecnologia, agricultura, diagnóstico de doenças, indústria de alimentos e vestuário, eletrônica e terapias farmacológicas. Na medicina veterinária, diversos estudos estão sendo realizados no mundo, principalmente nas áreas que envolvem a busca de novas opções de tratamento e o desenvolvimento de imunoterapia, bem como no diagnóstico de doenças. No Brasil, está claro que o uso da nanotecnologia na medicina veterinária ainda é incipiente, mas pode ser considerada uma área em crescimento. Além disso, vários pontos devem ser refletidos e pesquisados, incluindo alguns efeitos adversos e implicações para validar o uso seguro da nanotecnologia na medicina veterinária. Nesta revisão, destaca-se a nanotecnologia como uma alternativa promissora no atual contexto de inovação tecnológica brasileira, envolvendo saúde animal, o diagnóstico e o potencial uso terapêutico no controle de doenças em medicina veterinária. Em relação às perspectivas futuras, acredita-se que maiores investimentos em ciência e tecnologia são fatores fundamentais a contribuir para o avanço e fortalecimento da nanotecnologia no Brasil.
Palavras-chave:
nanociência; inovação tecnológica; saúde animal; diagnóstico; tratamento
INTRODUCTION:
Nanotechnology refers to the manipulation of the structure of materials, substances, or elements at the nanometer scale, producing structures between 1.0 nm and 100 nm (ROCO, 2011ROCO, M. C. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. Journal of Nanoparticle Research, v.13, p.427-445, 2011. Available from: <Available from: https://link.springer.com/article/10.1007/s11051-010-0192-z >. Accessed: Nov. 15, 2020. doi: 10.1007/s11051-010-0192-z.
https://link.springer.com/article/10.100...
; PELAZ et al., 2017PELAZ, B. et al. Diverse applications of nanomedicine. ACS Nano, v.11, p.2313-2381, 2017. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/28290206/ >. Accessed: Nov. 15, 2020. doi: 10.1021/acsnano.6b06040.
https://pubmed.ncbi.nlm.nih.gov/28290206...
). In 1959, Richard Feynman first mentioned the concept of nanotechnology in the lecture Plenty of Room at the Bottom in Nobel Prize, proposing that mounting a material atom by atom would never be possible (FEYNMAN, 1960FEYNMAN, R. P. There’s plenty of room at the bottom. Engineering and Science, v.23, p.22-36, 1960. Available from: <Microsoft Word - Feynman.doc (nanoparticles.org)>. Accessed: Nov. 15, 2020.). With the discovery of fullerenes (KROTO et al., 1985KROTO, H. W. et al.C60: Buckminsterfullerene. Nature , v.318, p.162-163, 1985. Available from: <Available from: https://www.nature.com/articles/318162a0#citeas >. Accessed: Nov. 15, 2020. doi: 10.1038/318162a0.
https://www.nature.com/articles/318162a0...
) and the synthesis of carbon nanotubes (IIJIMA, 1991IIJIMA, S. Helical microtubules of graphitic carbon. Nature, v.354, p.56-58, 1991. Available from: <Available from: https://www.nature.com/articles/354056a0 >. Accessed: Dec. 09, 2020. doi: 10.1038/354056a0.
https://www.nature.com/articles/354056a0...
), nanoscience and nanotechnology - once viewed as fiction - was considered a viable technology (FERREIRA et al., 2009FERREIRA, H. S. et al. Nanotechnology: general aspects and potential applications in catalysis. Química Nova , v.32, p.1860-1870, 2009. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422009000700033 >. Accessed: Dec. 20, 2020. doi: 10.1590/S0100-40422009000700033.
https://www.scielo.br/scielo.php?script=...
). In 1991, a processing method involving the molecular manipulation of atoms was proposed (FERREIRA et al., 2009). Later, different areas of activity contributed to nanotechnology. These included, among others, chemistry, biology, molecular physics, material science, computer science, and electrical and mechanical engineering (ROCO, 2011).
The increased interest in the applications of nanotechnology in medicine has led to the emergence of a new field called nanomedicine (PROW et al., 2004PROW, T. W. et al. Nanomedicine - nanoparticles, molecular biosensors and targeted gene/drug delivery for combined single-cell diagnostics and therapeutics. Advanced Biomedical and Clinical Diagnostic Systems II, v.5318, p.01-11, 2004. doi: 10.1117/12.547922.
https://doi.org/10.1117/12.547922....
; FREITAS JR., 2005FREITAS JR, R.A. What is nanomedicine? Nanomedicine, v.01, p.02-09, 2005. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S1549963404000048 >. Accessed: Nov. 15, 2020. doi: 10.1016 / j.nano.2004.11.003.
https://www.sciencedirect.com/science/ar...
; PELAZ et al., 2017PELAZ, B. et al. Diverse applications of nanomedicine. ACS Nano, v.11, p.2313-2381, 2017. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/28290206/ >. Accessed: Nov. 15, 2020. doi: 10.1021/acsnano.6b06040.
https://pubmed.ncbi.nlm.nih.gov/28290206...
).
Research on nanoparticles is promising in the areas of disease diagnosis, control, and treatment. In addition, it is promising in the development of strategies for improving animal fertility and reducing contaminants in industry (VON SAMSON-HIMMELSTJERNA et al., 2005VON SAMSON-HIMMELSTJERNA, G. et al. Will technology provide solutions for drug resistance in veterinary helminths? Veterinary Parasitology . v.132, p.223-239, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/16118040/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.vetpar.2005.07.014.
https://pubmed.ncbi.nlm.nih.gov/16118040...
; SMITH et al., 2013SMITH, D. M. et al. Applications of nanotechnology for immunology. Nature Immunology, v.13, p.592-605, 2013. Available from: <Available from: https://www.nature.com/articles/nri3488 >. Accessed: Dec. 20, 2020. doi: 10.1038/nri3488.
https://www.nature.com/articles/nri3488...
; ALI et al., 2014ALI, M. et al. Therapeutic efficacy of poly (lactic-co-glycolic acid) nanoparticles encapsulated ivermectin (nano-ivermectin) against brugian filariasis in experimental rodent model. Parasitology Research, v.113, p.681-691, 2014. Available from: <Available from: https://link.springer.com/article/10.1007/s00436-013-3696-5 >. Accessed: Jan. 08, 2021. doi: 10.1007/s00436-013-3696-5.
https://link.springer.com/article/10.100...
; CHAO et al., 2016CHAO, J. et al. DNA nanotechnology-enabled biosensors. Biosensors and Bioelectronics, v.76, p.68-79, 2016. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0956566315302578 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.bios.2015.07.007.
https://www.sciencedirect.com/science/ar...
; KING et al., 2018KING, T. et al. Nanotechnology in the food sector and potential applications for the poultry industry. Trends in Food Science & Technology , v.72, p.62-73, 2018. Available from: <Available from: https://www.sciencedirect.com/science/article/pii/S0924224417303448 >. Accessed: Jan. 21, 2021. doi: 10.1016 / j.tifs.2017.11.015.
https://www.sciencedirect.com/science/ar...
; SHAKIR et al., 2018SHAKIR, M. et al. Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: bio-inspired nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules, v.111, p.903-916, 2018. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S014181301733698X >. Accessed: Dec. 09, 2020. doi: 10.1016/j.ijbiomac.2018.01.035.
https://www.sciencedirect.com/science/ar...
; FEUGANG et al., 2019FEUGANG, J. M. et al. Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology , v.137, n.01, p.75-81, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/31204016/ >. Accessed: Jan. 08, 2021. doi: 10.1016/j.theriogenology.2019.05.040.
https://pubmed.ncbi.nlm.nih.gov/31204016...
). Nanotechnology has been identified as a high impact technology in the 21st century, particularly in the livestock industry (FEUGANG et al., 2019).
Scientifically validated nanoparticle products have been incorporated into marketable products for veterinary medicine (UNDERWOOD et al., 2012UNDERWOOD, C. et al. Nanomedicine and veterinary science: The reality and the practicality. Veterinary Journal, v.193, p.12-23, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22365842/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.tvjl.2012.01.002.
https://pubmed.ncbi.nlm.nih.gov/22365842...
). This highlights the growth of research involving nanotechnology as a science applicable to veterinary medicine.
The aim of this narrative review is to address the applicability of nanotechnology in veterinary medicine with emphasis on research in Brazil from 2013 to 2020. This narrative review has the following structure: the reader is first introduced to the general aspects of applicability of nanotechnology in veterinary medicine, while later describing the research involving nanoscience performed in Brazil in the mentioned period.
Therapeutic applications
Drug delivery systems using nanoparticles are their most widespread applications (PROW et al., 2005PROW, T. W. et al. Biosensor-controlled gene therapy/drug delivery with nanoparticles for nanomedicine. Proceedingsof SPIE, v.5692, p.199-208 , 2005. doi: 10.1117/12.589422.
https://doi.org/10.1117/12.589422....
). The following advantages were obtained using this technology; assistance in the delivery of unstable and insoluble drugs, maintenance of active principle concentration at the expected site of action, and low systemic toxicity and reduced clearance compared to that of the original drug (SAHOO et al., 2003SAHOO, S. K. et al. Nanotech approaches to drug delivery and imaging. Drug Discovery Today, v. 08 , p.1112-1120, 2003. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/14678737/ >. Accessed: Nov. 15, 2020. doi: 10.1016/s1359-6446(03)02903-9.
https://pubmed.ncbi.nlm.nih.gov/14678737...
; BAKKER-WOUDENBERG et al., 2005BAKKER-WOUDENBERG, I. M. et al. Long-circulating sterically stabilized liposomes in the treatment of infections. Methods in Enzymology, v.391, p.228-260, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/15721385/ >. Accessed: Dec. 20, 2020. doi: 10.1016/S0076-6879(05)91014-8.
https://pubmed.ncbi.nlm.nih.gov/15721385...
; FAHMY et al., 2005FAHMY, T. M. et al. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials, v.26, p.5727-5736, 2005. Available from: <Available from: https://europepmc.org/article/med/15878378 >. Accessed: Jan. 21, 2021. doi: 10.1016/j.biomaterials.2005.02.025.
https://europepmc.org/article/med/158783...
; PARVEEN et al., 2012PARVEEN, S. et al. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine : Nanotechnology , Biology and Medicine, v.08, p.147-166, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21703993/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.nano.2011.05.016.
https://pubmed.ncbi.nlm.nih.gov/21703993...
). Thus, nanoparticle formulations require lower therapeutic doses than conventional drugs. This feature is very important in veterinary medicine as it allows lower doses of drugs and favors the reduction in residual levels of pharmaceuticals, particularly antimicrobials in carcasses and other animal products, as well as reduction in the cost of treatment (UNDERWOOD et al., 2012UNDERWOOD, C. et al. Nanomedicine and veterinary science: The reality and the practicality. Veterinary Journal, v.193, p.12-23, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22365842/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.tvjl.2012.01.002.
https://pubmed.ncbi.nlm.nih.gov/22365842...
).
Various drug delivery systems with nanoparticles have been developed. These include antineoplastic drugs (HOFHEINZ et al., 2005HOFHEINZ, R. D. et al. Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs, v.16, p.691-707, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/16027517/ >. Accessed: Dec. 09, 2020. doi: 10.1097/01.cad.0000167902.53039.5a.
https://pubmed.ncbi.nlm.nih.gov/16027517...
), antimicrobials (CORDEIRO et al., 2000CORDEIRO, C. et al. Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar Typhimurium intracellular infection model. Antimicrobial Agents and Chemotherapy, v.44, p.533-539, 2000. Available from: <Available from: https://aac.asm.org/content/44/3/533.abstract >. Accessed: Dec. 09, 2020. doi: 10.1128/aac.44.3.533-539.2000.
https://aac.asm.org/content/44/3/533.abs...
), analgesics (ROSE et al., 2005ROSE, J. S. et al. Extended-duration analgesia: Update on microspheres and liposomes. Regional Anesthesia and Pain Medicine, v.30, p.275-285, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/15898031/ >.Accessed: Dec. 09, 2020. doi: 10.1016/j.rapm.2005.01.004.
https://pubmed.ncbi.nlm.nih.gov/15898031...
), and anti-inflammatory drugs (METSELAAR et al., 2003METSELAAR, J. M. et al. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis and Rheumatism, v.48, p.2059-2066, 2003. Available from: <Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/art.11140 >. Accessed: Dec. 09, 2020. doi: 10.1002/art.11140.
https://onlinelibrary.wiley.com/doi/full...
). In veterinary medicine, nanoparticles of various substances have been tested for antibacterial (OLIVEIRA et al., 2013OLIVEIRA, H. P. et al. Antimicrobial activity of silver nanoparticles synthesized by the fungus Curvularia inaequalis. African Journal of Biotechnology, v.12, p.2917- 2923, 2013. Available from: <Available from: https://academicjournals.org/article/article1380722870_de%20Oliveira%20et%20al.pdf >. Accessed: Jan. 08, 2021. doi: 10.5897/AJB2013.12375.
https://academicjournals.org/article/art...
; SAGAVE et al., 2015SAGAVE, L. et al. Melaleuca alternifolia activity in nanoformulations and terpinen-4-ol against Rhodococcus equi isolates. Arquivos Brasileiros de Medicina Veterinária e Zootecnia , v.67, p.221-226, 2015. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352015000100221 >. Accessed: Dec. 09, 2020. doi: 10.1590/1678-7454.
https://www.scielo.br/scielo.php?script=...
; JAGUEZESKI et al., 2019JAGUEZESKI, A. M. et al. Effect of free and nano-encapsulated curcumin on treatment and energetic metabolism of gerbils infected by Listeria monocytogenes. Microbial Pathogenesis, v.134, 103564, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/31163248/ >. Accessed: Jan. 08, 2021. doi: 10.1016/j.micpath.2019.103564.
https://pubmed.ncbi.nlm.nih.gov/31163248...
; ACOSTA et al., 2020ACOSTA, A. C. et al. Antibacterial behavior of polypyrrole nanoparticles against Staphylococcus aureus isolated from cows and goats with mastitis. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, v.72, n.03, p.1047-1050, 2020. Available from: <Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S010209352020000301047&lng=en&nrm=iso >. Accessed: Jan. 08, 2021. doi: 10.1590/1678-4162-10384.
http://www.scielo.br/scielo.php?script=s...
), antiviral (GREENWOOD et al., 2008GREENWOOD, D. L. V. et al. Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads. Vaccine , v.26, p.2706-2713, 2008. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/18448209/ >. Accessed: Dec. 20, 2020. doi: 10.1016/j.vaccine.2008.03.025.
https://pubmed.ncbi.nlm.nih.gov/18448209...
; ZHAO et al., 2016ZHAO, K. et al. IgA response and protection following nasal vaccination of chickens with newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles. Scientific Reports, v.12, 25720, 2016. Available from: <Available from: https://www.nature.com/articles/srep25720 >. Accessed: Dec. 20, 2020. doi: 10.1038/srep25720.
https://www.nature.com/articles/srep2572...
; ZHAO et al., 2018ZHAO, K. et al. Enhancing Mucosal Immune Response of Newcastle Disease Virus DNA Vaccine Using N-2-Hydroxypropyl Trimethylammonium Chloride Chitosan and N,O-Carboxymethyl Chitosan Nanoparticles as Delivery Carrier. Molecular Pharmaceutics, v.15, p.226-237, 2018. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/29172532/ >. Accessed: Dec. 20, 2020. doi: 10.1021/acs.molpharmaceut.7b008 26.
https://pubmed.ncbi.nlm.nih.gov/29172532...
), anthelmintic (KHAN et al., 2015KHAN, Y. A. et al. Anthelmintic effect of biocompatible zinc oxide nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PLoS One, v.10, e0133086, 2015. Available from: <Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133086 >. Accessed: Jan. 08, 2021. doi: 10.1371/journal.pone.0133086.
https://journals.plos.org/plosone/articl...
; TOMAR et al., 2017TOMAR, R. S. et al. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. Journal of Helminthology, v.91, p.454-461, 2017. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/27374616/ >. Accessed: Jan. 08 , 2021. doi: 10.1017/S0022149X16000444.
https://pubmed.ncbi.nlm.nih.gov/27374616...
; REHMAN et al., 2019REHMAN, A. et al. In vitro anthelmintic effect of biologically synthesized silver nanoparticles on liver amphistome, Gigantocotyle explanatum. Experimental Parasitology , v.198, p.95-104, 2018. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0014489418304624 >. Accessed. Jan. 08 , 2021. doi: 10.1016/j.exppara.2019.02.005.
https://www.sciencedirect.com/science/ar...
), antiprotozoal (KROUBI et al., 2010KROUBI, M. et al. Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology, v.21, p.01-08, 2010. Available from: <Available from: https://iopscience.iop.org/article/10.1088/0957-4484/21/50/505102/meta >. Accessed: Jan. 08, 2021. doi: 10.1088/0957-4484/21/50/505102.
https://iopscience.iop.org/article/10.10...
; HASSAN et al., 2019HASSAN, D. et al. Antiprotozoal activity of silver nanoparticles against Cryptosporidium parvum oocysts: New insights on their feasibility as a water disinfectant. Journal of Microbiological Methods, v.22, 105698, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/31446036/ >. Accessed: Dec. 20, 2020. doi: 10.1016/j.mimet.2019.105698.
https://pubmed.ncbi.nlm.nih.gov/31446036...
), antifungal (BANSOD et al., 2015), antioomycetes (VALENTE et al., 2016VALENTE, J. S. S. et al. In Vitro Activity of Melaleuca alternifolia (Tea Tree) in Its Free Oil and Nanoemulsion Formulations Against Pythium insidiosum. Mycopathologia, v.181, p.865-869, 2016. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/27544535/ >. Accessed: Jan. 21, 2021. doi: 10.1007/s11046-016-0051-2.
https://pubmed.ncbi.nlm.nih.gov/27544535...
; VALENTE et al., 2019VALENTE, J. S. S. et al. In vitro anti-Pythium insidiosum activity of biogenic silver nanoparticles. Medical Mycology , v.57, p.858-863, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/30597067/ >. Accessed: Jan. 21, 2021. doi: 10.1093/mmy/myy147.
https://pubmed.ncbi.nlm.nih.gov/30597067...
; VALENTE et al., 2020), anti-algae (JAGIELSKI et al, 2018JAGIELSKI, T. et al. The activity of silver nanoparticles against microalgae of the Prototheca genus. Nanomedicine , v.13, p.1025-1036, 2018. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/29790400/ >. Accessed: Jan. 08, 2021. doi: 10.2217/nnm-2017-0370.
https://pubmed.ncbi.nlm.nih.gov/29790400...
; ELY et al., 2020ELY, V. L. et al. In vitro algicidal effect of polypyrrole on Prototheca species isolates from bovine mastitis. Medical Mycology, v.58, p.1114-1119, 2020. Available from: <Available from: https://academic.oup.com/mmy/article-abstract/58/8/1114/5828677?redirectedFrom=fulltext >. Accessed: Dec. 09, 2020. doi: 10.1093/ mmy / myaa021.
https://academic.oup.com/mmy/article-abs...
), and antineoplastic (ROCHA et al., 2019ROCHA, M. S. T. et al. Photodynamic therapy for cutaneous hemangiosarcoma in dogs. Photodiagnosis and Photodynamic Therapy, v.27, p.39-43, 2019. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S1572100019301735 >. Accessed: Dec. 09, 2020. doi: 10.1016/j.pdpdt.2019.05.026.
https://www.sciencedirect.com/science/ar...
) activities.
The passage of nanoparticles to specific locations can occur passively or actively through vectorization. In active vectorization, the mechanism of action is due to the coupling of a targeting portion. These include specific binders for molecular recognition, monoclonal antibodies, transferrin, peptides, or portions of sugars that lead drugs to the site of action (Figure 1-A). The passive form is supported by the intrinsic properties of the nanostructured molecule and occurs through the retention and increased permeability effect. This is based on the ability of the nanoparticles to spill blood vessels to other tissues, resulting in accumulation at sites of increased vascular permeability (tumors, infections, and inflammatory areas) (Figure 1-B) (ISHIHARA et al., 2010ISHIHARA, T. et al. Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents. International Journal of Pharmaceutics, v.385, p.170-175, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19837147/ >. Accessed: Dec. 09, 2020. doi: 10.1016/j.ijpharm.2009.10.025.
https://pubmed.ncbi.nlm.nih.gov/19837147...
; MAEDA, 2010MAEDA, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chemistry, v.21, p.797-802, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/20397686/ >. Accessed: Jan. 08, 2021. doi: 10.1021/bc100070g.
https://pubmed.ncbi.nlm.nih.gov/20397686...
; PARVEEN et al., 2012PARVEEN, S. et al. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine : Nanotechnology , Biology and Medicine, v.08, p.147-166, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21703993/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.nano.2011.05.016.
https://pubmed.ncbi.nlm.nih.gov/21703993...
). The combination of passive vectorization with active vectorization can potentiate the nanocarrier effect thereby increasing the effectiveness of treatment (CHEN et al., 2010CHEN, Y. et al. Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. The Journal of Biological Chemistry, v.285, p.22639-22650, 2010. Available from: <Available from: https://www.jbc.org/article/S0021-9258(20)60297-6/fulltext >. Accessed: Jan. 08, 2021. doi: 10.1074/jbc.M110.125906.
https://www.jbc.org/article/S0021-9258(2...
; DANHIER et al., 2010DANHIER, F. et al. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, v.148, p.135-146, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/20797419/ >. Accessed: Jan. 08, 2021. doi: 10.1016/j.jconrel.2010.08.027.
https://pubmed.ncbi.nlm.nih.gov/20797419...
; LEE et al., 2012LEE, J. H. et al. Combination Drug Delivery Approaches in Metastatic Breast Cancer. Journal of Drug Delivery, 2012, 915375. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22619725/ >. Accessed: Dec. 20, 2020. doi: 10.1155/2012/915375.
https://pubmed.ncbi.nlm.nih.gov/22619725...
).
Schematic representation of the action of nanoparticles (green spheres), e.g., in tumor cells. (A) Active vectoring: the mechanism of action is due to the modification of the surface of the nanoparticles with molecules that can be recognized by specific ligands for molecular recognition, monoclonal antibodies, transferrin, peptides or portions of sugars that lead the drugs to the site of action. (B) Passive vectoring: this mechanism is supported by the intrinsic properties of nanoparticles, resulting in accumulation in tumor regions, as well as infections and inflammatory areas, due to the greater vascular permeability in these locations.
COUVREUR (1993COUVREUR, P. et al. Nanoparticles and microparticles for the delivery of polypeptides and proteins. Advanced Drug Delivery Reviews, v.10, p.141-162, 1993. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/0169409X93900467 >. Accessed: Nov. 15, 2020. doi: 10.1016/0169-409X(93)90046-7.
https://www.sciencedirect.com/science/ar...
) and LIU et al. (2007LIU, Y. et al. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer, v.120, p.2527-2537, 2007. Available from: <Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.22709 >. Accessed: Nov. 15, 2020. doi: 10.1002/ijc.22709.
https://onlinelibrary.wiley.com/doi/full...
) reported that the standard mechanisms involved in the release of drugs include enzymatic degradation or disintegration and fusion with the cell membrane surface, releasing the contents into the cell and/or endocytosis. These mechanisms can be triggered by external factors such as changes in temperature, pH and magnetic field. To avoid such influences, nanostructured systems (polymeric or lipid nanoparticles, nanoemulsions, and liposomes) appeared to be a great option with several advantages. These include the improvement in efficacy and bioavailability of drugs, reduction of side effects, increased stability, and reduced drug delivery rate (SCHAFFAZICK et al., 2003SCHAFFAZICK, S. R. et al. Physicochemical characterization and stability of the polymeric nanoparticle systems for Drug administration. Química Nova , v.26, p.726-737, 2003. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422003000500017 >. Accessed: Nov. 15, 2020. doi: 10.1590/S0100-40422003000500017.
https://www.scielo.br/scielo.php?script=...
; PADMAVATHY et al., 2008PADMAVATHY, N. et al. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Science and Technology of Advanced Materials, v.09, 035004, 2008. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/27878001/ >. Accessed: Dec. 20, 2020. doi: 10.1088/1468-6996/9/3/035004.
https://pubmed.ncbi.nlm.nih.gov/27878001...
; MISHRA et al., 2011MISHRA, A. et al. Biosynthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. Journal of Nanoscience andNanotechnology , v.11, p.243-248, 2011. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21446434/ >. Accessed: Jan. 08, 2021. doi: 10.1166/jnn.2011.3265.
https://pubmed.ncbi.nlm.nih.gov/21446434...
).
The term nanoparticles includes nanocapsules and nanospheres, which differ in composition and structural organization. Nanocapsules are formed by a polymeric shell disposed around an oily core; the drug may be dissolved in the core and/or adsorbed to the polymeric wall. Moreover, nanospheres, which have no oil in their composition, are formed by a polymeric matrix in which the drug can be entrapped or adsorbed (ALLEMANN et al., 1993ALLEMANN, E. et al. Drug-loaded nanoparticles - Preparation methods and drug targeting issues. European Journal Pharmaceutical and Biopharmaceutic, v.39, p.173-191, 1993.).
Nanoemulsions are droplets dispersed in the size range of nanoparticles, which provide stability for preventing sedimentation or creaming (SOLANS, 2005SOLANS, C. et al. Nanoemulsions. Current Opinion in Colloid & Interface Science , v.10, p.102-110, 2005. Available from: <Available from: https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-20665-8_27 >. Accessed: Nov. 15, 2020. doi: 10.1007/978-3-642-20665-8_27.
https://link.springer.com/referenceworke...
). These characteristics allow some water-soluble substances to remain permanently stable in the aqueous phase (VANDAMME et al., 2010VANDAMME, T. F. et al. Low-energy nanoemulsification to design veterinary controlled drug delivery devices. International Journal of Nanomedicine , v.05, p.867-873, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21042549/ >. Accessed: Nov. 15, 2020. doi: 10.2147/IJN.S13273.
https://pubmed.ncbi.nlm.nih.gov/21042549...
). The formulations are suitable for therapeutic use due to their inability to cause cell damage and possible application to the skin and/or mucous membranes. Nanoemulsion formulations may also be used to transport insoluble drugs in aqueous media, carry antigens to generate mucosal immunity, and in anticancer therapies (THAKUR et al., 2012THAKUR, N. et al. Nanoemulsions: A Review on Various Pharmaceutical Application. Global Journal of Pharmacology, v.06, p.222-225, 2012. Available from: <Available from: https://idosi.org/gjp/6(3)12/10.pdf >. Accessed: Nov. 15, 2020. doi: 10.5829/idosi.gjp.2012.6.3.65135.
https://idosi.org/gjp/6(3)12/10.pdf...
).
Liposomes are microscopic vesicles composed of one or more concentric lipid bilayers separated by an aqueous medium. These structures have the ability to encapsulate hydrophilic and/or lipophilic substances where the first stand in the aqueous compartment and the lipophilic substance is inserted or adsorbed into the membrane. Liposomes are biodegradable, biocompatible, and non-immunogenic and are highly versatile for research, therapeutic, and analytical applications (EDWARDS et al., 2006EDWARDS, K. A et al. Analyses of liposomes. Talanta, v.68, p.1432-1441, 2006. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0039914005005436 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.talanta.2005.08.031.
https://www.sciencedirect.com/science/ar...
).
Industry
Nanomaterials have been used in different industries, offering potential applications in providing solutions through green chemistry approaches for advancing food security (KING et al., 2018KING, T. et al. Nanotechnology in the food sector and potential applications for the poultry industry. Trends in Food Science & Technology , v.72, p.62-73, 2018. Available from: <Available from: https://www.sciencedirect.com/science/article/pii/S0924224417303448 >. Accessed: Jan. 21, 2021. doi: 10.1016 / j.tifs.2017.11.015.
https://www.sciencedirect.com/science/ar...
). Titanium dioxide nanoparticles are the most commonly used metal oxide nanoparticles in various industrial and commercial products, including food (WEIR et al., 2012WEIR, A. et al. Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, v.46, p.2242-2250, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22260395/ >. Accessed: Dec. 20, 2020. doi: 10.1021/es204168d.
https://pubmed.ncbi.nlm.nih.gov/22260395...
). Silver nanoparticles and nanocomposites are the most widely used antimicrobial nanomaterials in the food industry due to their biocidal activity against a broad range of Gram-positive and Gram-negative microorganisms, yeast, molds, and viruses (HE et al., 2016HE, X. et al. Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, v.24, p.671-681, 2016. Available from: <Available from: https://www.sciencedirect.com/science/article/pii/S1021949816300758 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.jfda.2016.06.001.
https://www.sciencedirect.com/science/ar...
; PETERS et al., 2016PETERS, R. J. et al. Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science & Technology , v.54, p.155-164, 2016. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0924224415300467 >. Accessed: Nov. 15, 2020. doi: 10.1016/j.tifs.2016.06.008 .
https://www.sciencedirect.com/science/ar...
). Nanoparticles were used in animal feed supplements, equipment disinfectants, refrigerators and cutting boards, nano-clothes, air and water filters, packing, and monitoring of biological contaminants (KING et al., 2018). Problems with the use of nanotechnology for the animal food chain include the costs and potential adverse effects of nanomaterials on mammalian health and the environment (BRADLEY et al., 2011BRADLEY, E. L. et al. Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science & Technology, v.22, p.604-610, 2011. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0924224411000033 >. Accessed: Dec. 09, 2020. doi: 10.1016 / j.tifs.2011.01.002.
https://www.sciencedirect.com/science/ar...
; KING et al., 2018).
Diagnostic applications
Nanoparticles may contain gold dots, perfluorocarbons, and liposomes as imaging agents to detect specific cell types (MATTEUCCI et al., 2000MATTEUCCI, M. L. et al. The role of liposomes in drug delivery and diagnostic imaging: A review. Veterinary Radiology and Ultrasound, v.41, p.100-107, 2000. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/10779068/ >. Accessed: Dec. 09, 2020.
https://pubmed.ncbi.nlm.nih.gov/10779068...
; BENTOLILA et al., 2009BENTOLILA, L. A. et al. Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine, v.50, n.04, p.493-496, 2009. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19289434/ >. Accessed: Dec. 09, 2020. doi: 10.2967 / jnumed.108.053561.
https://pubmed.ncbi.nlm.nih.gov/19289434...
). In imaging-based diagnosis, nanoparticles increase the resolution of images, thus enhancing the sensitivity and rapidity of detection of lesions. Further, they are specific biomarkers of pathogens (SMITH et al., 2012SMITH, L. et al. Nanoparticles in Cancer Imaging and Therapy. Journal of Nanomaterials, p.01-07, 2012. Available from: <Available from: https://www.hindawi.com/journals/jnm/2012/891318/ >. Accessed: Dec. 20, 2020. doi: 10.1155/2012/891318.
https://www.hindawi.com/journals/jnm/201...
). When infectious animal diseases caused by pathogenic microorganisms threaten public health, pathogen detection is an important step in the diagnosis as it enables the successful treatment of these diseases (VIDIC et al., 2017VIDIC, J. et al. Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, v.48, p.01-22, 2017.Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/28222780/ >. Accessed: Nov. 15, 2020. doi: 10.1186/s13567-017-0418-5.
https://pubmed.ncbi.nlm.nih.gov/28222780...
).
New diagnostic assays have been developed for ligand functional nanoparticles with biological molecules such as antibodies, peptides, proteins, and nucleic acids (DRISKELL et al., 2005DRISKELL, J. D. et al. Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Analytical Chemistry, v.77, p.6147-6154, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/16194072/ >. Accessed: Nov. 15, 2020. doi: 10.1021/ac0504159.
https://pubmed.ncbi.nlm.nih.gov/16194072...
; LUCHINI et al., 2010LUCHINI, A. et al. Nanoparticle technology: Addressing the fundamental roadblocks to protein biomarker Discovery. Current Molecular Medicine, v.10, p.133-141, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/20196732/ >. Accessed: Dec. 09, 2020. doi: 10.2174/156652410790963268.
https://pubmed.ncbi.nlm.nih.gov/20196732...
; CHAO et al., 2016CHAO, J. et al. DNA nanotechnology-enabled biosensors. Biosensors and Bioelectronics, v.76, p.68-79, 2016. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0956566315302578 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.bios.2015.07.007.
https://www.sciencedirect.com/science/ar...
). In spectroscopy, flow cytometry, and histological methods, nanotechnology enhances the sensitivity of the test by providing an appropriate tool for diagnosis. Moreover, this technology allows the mapping of molecular profiles associated with diseases (HALFPENNY et al., 2010HALFPENNY, K. C. et al. Nanoparticle detection of respiratory infection. Nanomedicine and Nanobiotechnology, v.02, p.277-290, 2010. Available from: <Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/wnan.83 >. Accessed: Dec. 09, 2020. doi: 10.1002/wnan.83.
https://onlinelibrary.wiley.com/doi/full...
).
Nanosensors have great potential in animal production areas and inspection of products of animal origin due to their ability to measure and distinguish a substance from an organic material or tissue. This has enabled the detection of microbial agents, organophosphate compounds, and antibiotics in the β-lactam group (MACHADO et al., 2014MACHADO, I. R. L. et al. Carbon nanotubes: potential use in veterinary medicine. Ciência Rural , v.44, p.1823-1829, 2014. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782014001001823 >. Accessed: Dec. 20, 2020. doi: 10.1590/0103-8478cr20140003.
https://www.scielo.br/scielo.php?script=...
; HANAFY, 2018HANAFY, M. H., 2018. Myconanotechnology in veterinary sector: Status quo and future Perspectives. International Journal of Veterinary Science and Medicine, v.06, p.270-273, 2018. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/30564608/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.ijvsm.2018.11.003.
https://pubmed.ncbi.nlm.nih.gov/30564608...
). Nanoshells, which are examples of nanosensors, can be made from optically tunable nanoparticles manufactured from a dielectric center covered with an ultrathin metallic layer. This makes them potential candidates for use in the expeditious diagnosis and detection of tumors. Their mechanism results from their infusion into the animal’s circulation system with focused operators connected, to search for and append to the surface receptors of tumor cells. This illuminates the body with infrared light, thereby increasing the cell temperature and demolishing the tumor (HANAFY, 2018).
In addition, diagnostic methods in veterinary medicine using nanoparticles validated for the detection of pathogens have been reported. These include viral agents such as Newcastle disease, poxvirus goat (YUAN et al., 2009YUAN, P. et al. Multicolor quantum dot-encoded microspheres for the fluoroimmunoassays of chicken newcastle disease and goat poxvírus. Journal of Nanoscience and Nanotechnology , v.09, p.3092-3098, 2009. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19452974/ >. Accessed: Dec. 09, 2020. doi: 10.1166/jnn.2009.009.
https://pubmed.ncbi.nlm.nih.gov/19452974...
), avian influenza, foot-and-mouth disease, bovine respiratory syncytial viruses, and bluetongue and epizootic hemorrhagic (VIDIC et al., 2017VIDIC, J. et al. Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, v.48, p.01-22, 2017.Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/28222780/ >. Accessed: Nov. 15, 2020. doi: 10.1186/s13567-017-0418-5.
https://pubmed.ncbi.nlm.nih.gov/28222780...
), bacterial agents such as Mycobacterium avium subsp. paratuberculosis in fecal samples (KUMANAN et al., 2009KUMANAN, V. et al. A biosensor assay for the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples. Journal of Veterinary Science, v.10, p.35-42, 2009. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19255522/ >. Accessed: Jan. 08, 2021. doi: 10.4142/jvs.2009.10.1.35.
https://pubmed.ncbi.nlm.nih.gov/19255522...
), Escherichia coli, Salmonella spp., Clostridium perfringens, Campylobacter spp., Mycoplasma spp., other bovine mastitis pathogens, and protozoans such as Eimeria spp. (VIDIC et al., 2017).
An example of a rapid, sensitive, and inexpensive test available in veterinary medicine is the diagnostic method for Mycobacterium bovis, which is based on an electronic nose (NA-NOSE) that is capable of distinguishing between positive and negative animals in serum samples (FEND et al., 2005FEND, R. et al. Use of an electronic nose to diagnose Mycobacterium bovis infection in badgers and cattle. Journal of Clinical Microbiology, v.43, p.1745-1751, 2005. Available from: <Available from: https://jcm.asm.org/content/43/4/1745.short >. Accessed: Dec. 20, 2020. doi: 10.1128/JCM.43.4.1745-1751.2005.
https://jcm.asm.org/content/43/4/1745.sh...
).
Reproduction
Nanotechnology is an important tool that could benefit the livestock industry, particularly through post-collection manipulation of semen, routinely used for artificial insemination. It could potentially revolutionize the global livestock breeding industry (FEUGANG et al., 2019FEUGANG, J. M. et al. Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology , v.137, n.01, p.75-81, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/31204016/ >. Accessed: Jan. 08, 2021. doi: 10.1016/j.theriogenology.2019.05.040.
https://pubmed.ncbi.nlm.nih.gov/31204016...
). In reproductive biology, nanoparticles have been reported to increase the longevity of spermatozoa, improve male fertility, and select the best spermatozoa for insemination and semen purification (FALCHI et al., 2016FALCHI, L. et al. Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure. Theriogenology, v.85, p.1274-1281, 2016. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0093691X15006846 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.theriogenology.2015.12.011.
https://www.sciencedirect.com/science/ar...
; DURFEY et al., 2017DURFEY, C. L. et al. Nanotechnology-based selection of boar spermatozoa: growth development and health assessments of produced offspring. Livestock science, v.205, p.137-142, 2017. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S1871141317302895 >. Accessed: Jan. 08, 2021. doi: 10.1016/j.livsci.2017.09.024.
https://www.sciencedirect.com/science/ar...
; FEUGANG et al., 2019). A nanotube embedded under the skin can provide constant estimation of changes in the blood estradiol level (O’CONNELL et al., 2002O’CONNELL, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science, v.297, p.593-596, 2002. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/12142535/ >. Accessed: Dec. 09, 2020. doi: 10.1126/science.1072631.
https://pubmed.ncbi.nlm.nih.gov/12142535...
), thus detecting estrus by close infrared fluorescence (O’CONNELL et al., 2002; HANAFY, 2018HANAFY, M. H., 2018. Myconanotechnology in veterinary sector: Status quo and future Perspectives. International Journal of Veterinary Science and Medicine, v.06, p.270-273, 2018. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/30564608/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.ijvsm.2018.11.003.
https://pubmed.ncbi.nlm.nih.gov/30564608...
). In the future, it will be possible to distinguish the best reproducers and detect hereditary diseases using nanotechnology (HANAFY, 2018).
Vaccine
Compared to conventional vaccines, formulations containing nanoparticles may reduce the frequency of vaccine doses and restrict the handling of domestic and wild animals (AUCOUTURIER et al., 2001AUCOUTURIER, J. et al. Adjuvants designed for veterinary and human vaccines. Vaccine, v.19, p.2666-2672, 2001. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/11257407/ >. Accessed: Jan. 08, 2021. doi: 10.1016/s0264-410x(00)00498-9.
https://pubmed.ncbi.nlm.nih.gov/11257407...
; NORDLY et al., 2009NORDLY, P. et al. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opinion on Drug Delivery, v.06, p.657-672, 2009. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19538037/ >. Accessed: Dec. 20, 2020. doi: 10.1517/17425240903018863.
https://pubmed.ncbi.nlm.nih.gov/19538037...
).
The immunostimulatory activity of nanoscale materials has been attributed to antigen presentation at the depot effect, stability, conformational integrity, slow release, and prolonged exposure to antigens. Additional mechanisms are associated with enhancement of the innate immune response and release of soluble mediators (cytokines, chemokines, and immunomodulatory molecules) that regulate the immune response (LOOK et al., 2010LOOK, M. et al. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Advanced Drug Delivery Reviews, v.62, p.378-393, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19922750/ >. Accessed: Dec. 09, 2020. doi: 10.1016/j.addr.2009.11.011.
https://pubmed.ncbi.nlm.nih.gov/19922750...
).
Nanoparticles, nanoemulsions, and nanotubes can be very useful in vaccinology as entrainment mechanism antigens, adjuvants, and immunomodulators of the immune system (SMITH et al., 2012SMITH, L. et al. Nanoparticles in Cancer Imaging and Therapy. Journal of Nanomaterials, p.01-07, 2012. Available from: <Available from: https://www.hindawi.com/journals/jnm/2012/891318/ >. Accessed: Dec. 20, 2020. doi: 10.1155/2012/891318.
https://www.hindawi.com/journals/jnm/201...
). In veterinary medicine, cost, stability, facility of administration, bioavailability, and biodegradability are some essential characteristics for applicability and possible implementation of nanotechnology, including as immunobiological agents (AUCOUTURIER et al., 2001AUCOUTURIER, J. et al. Adjuvants designed for veterinary and human vaccines. Vaccine, v.19, p.2666-2672, 2001. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/11257407/ >. Accessed: Jan. 08, 2021. doi: 10.1016/s0264-410x(00)00498-9.
https://pubmed.ncbi.nlm.nih.gov/11257407...
; DURAN et al., 2010DURÁN, N., et al. Nanocrystal technology in pharmaceuticals. Química Nova, v.33, p.151-158, 2010. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422010000100028&lng=pt&nrm=iso >. Accessed: Jan. 13, 2021. doi: 10.1590/S0100-40422010000100028.
https://www.scielo.br/scielo.php?script=...
).
Implications of nanostructures
Careful assessment of the use of nanostructures for animals, people, and the environment is essential for the development and safe use of nanostructured compounds (QUINA, 2004QUINA, F. H. Nanotecnologia e o meio ambiente: perspectivas e riscos. Química Nova , v.27, p.1028-1029, 2004. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422004000600031 >. Accessed: Nov. 15, 2020. doi: 10.1590/S0100-40422004000600031.
https://www.scielo.br/scielo.php?script=...
; O’BRIEN et al., 2010O’BRIEN, N. et al. Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, v.45, p.992-1007, 2010. Available from: <Available from: https://www.tandfonline.com/doi/abs/10.1080/10934521003772410 >. Accessed: Nov. 15, 2020. doi: 10.1080/10934521003772410.
https://www.tandfonline.com/doi/abs/10.1...
). Thus, as the biological and physicochemical properties of nanostructures vary, their toxicity may be affected by different factors, including the chemical composition, electrical charge, size, and shape of the material used for the development of nanostructures, among others (CARD et al., 2011CARD, J. W. et al. An appraisal of the published literature on the safety and toxicity of food-related nanomaterials. Critical Reviews in Toxicology, v.41, p.22-49, 2011. doi: Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21077788/ > . Accessed: Dec. 09, 2020. doi: 10.3109/10408444.2010.524636.
https://pubmed.ncbi.nlm.nih.gov/21077788...
).
The evaluation of nanostructure formulation security requires a combination of in vitro and in vivo research. A preliminary step is to evaluate in vitro cytotoxicity, genotoxicity, influence of nanostructures on cell signaling, and other cellular functions using cell culture models and analysis of gene expression in cells (SCHRAND et al., 2010SCHRAND, A. M. et al. Metal-based nanoparticles and their toxicity assessment. Nanomedicine and Nanobiotechnology, v.02, p.544-568, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/20681021/ >. Accessed: Nov. 15, 2020. doi: 10.1002/wnan.103.
https://pubmed.ncbi.nlm.nih.gov/20681021...
). When internalized in cells, nanomaterials can originate reactive oxygen species, surpassing the ability of antioxidant enzymes to maintain the balance of intracellular oxidation-reduction reactions, causing oxidative stress, one of the main factors of cytotoxicity caused by these nanoparticles (WELLS et al., 2009WELLS, P. G, et al. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicological Science s, v.108 , p.4-18, 2009. Available from: <Available from: https://academic.oup.com/toxsci/article/108 /1/4/1673173 >. Accessed: May, 05, 2021. doi: 10.1093/toxsci/kfn263.
https://academic.oup.com/toxsci/article/...
; PASCHOALINO et al., 2010PASCHOALINO, M. P., et al. Nanomaterials and the environment. Química Nova , v.33, n. 2, p.421-430, 2010. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422010000200033&lng=pt&nrm=iso&tlng=pt >. Accessed: May, 05, 2021. doi: 10.1590/S0100-40422010000200033.
https://www.scielo.br/scielo.php?script=...
). Therefore, the absorption, distribution, metabolism, and excretion of each nanostructure formulation should be defined by pharmacokinetic, pharmacodynamic, and toxicokinetic studies (CHEN et al., 2006CHEN, Z. et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, v.163, p.109-120, 2006. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0378427405003176 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.toxlet.2005.10.003.
https://www.sciencedirect.com/science/ar...
; JI et al., 2007JI, J. H. et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, v.19, p.857-871, 2007. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/17687717/ >. Accessed: Jan. 08, 2021. doi: 10.1080/08958370701432108.
https://pubmed.ncbi.nlm.nih.gov/17687717...
; SZEBENI et al., 2007SZEBENI, J. et al. Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. Journal of Liposome Research, v.17, p.107-117, 2007. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/17613700/ >. Accessed: Nov. 15, 2020. doi: 10.108 0/08 982100701375118.
https://pubmed.ncbi.nlm.nih.gov/17613700...
; HO et al., 2013HO, C. C. et al. Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung. Nanotoxicology, v.07, p.105-115, 2013. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22107365/ >. Accessed: Jan. 08, 2021. doi: 10.3109/17435390.2011.635814.
https://pubmed.ncbi.nlm.nih.gov/22107365...
).
Non-biodegradable nanostructures, particularly inorganic ones, may be associated with side effects. Further, they have greater potential for tissue accumulation than biodegradable nanostructures. However, biodegradable nanostructures may exhibit toxicity due to biodegradation of the product or their metabolites (DURÁN et al., 2010DURÁN, N., et al. Nanocrystal technology in pharmaceuticals. Química Nova, v.33, p.151-158, 2010. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422010000100028&lng=pt&nrm=iso >. Accessed: Jan. 13, 2021. doi: 10.1590/S0100-40422010000100028.
https://www.scielo.br/scielo.php?script=...
). Thus, the toxicity of nanostructured compounds needs to be further evaluated, particularly the implications for the environment. In this sense, ecotoxicity is considered one of the main challenges to be addressed in an interdisciplinary way to understand the behavior of nanomaterials in the environment (BOTTERO et al., 2015BOTTERO, J. Y. et al. Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus Geoscience, v.347, p.35-42, 2015. Available from: <Available from: https://www.sciencedirect.com/science/article/pii/S1631071314001497 >. Accessed: Nov. 15, 2020. doi: 10.1016/j.crte.2014.10.004.
https://www.sciencedirect.com/science/ar...
).
Nanotechnology in veterinary medicine in Brazil
As presented, nanotechnological innovations have been used in veterinary medicine with different applications and have been reported by several researchers (IRACHE et al., 2011IRACHE, J. M. et al. Nanomedicine : novel approaches in human and veterinary therapeutics. Veterinary Parasitology, v.180, p.47-71, 2011. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21680101/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.vetpar.2011.05.028.
https://pubmed.ncbi.nlm.nih.gov/21680101...
; UNDERWOOD et al., 2012UNDERWOOD, C. et al. Nanomedicine and veterinary science: The reality and the practicality. Veterinary Journal, v.193, p.12-23, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22365842/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.tvjl.2012.01.002.
https://pubmed.ncbi.nlm.nih.gov/22365842...
; EGUCHI et al., 2013EGUCHI, E. S. et al. O caminho da nanotecnologia na produção animal brasileira. Pubvet, v.07, n.08, p.01-12, 2013. Available from: <Available from: http://pubvet.com.br/artigo/592/o-caminho-da-nanotecnologia-na-produccedilatildeo-animal-brasileira >. Accessed: Dec. 09, 2020. doi: 10.22256/pubvet.v7n8.1528.
http://pubvet.com.br/artigo/592/o-caminh...
).
In Brazil, one of the world’s agricultural commodity powerhouses, livestock plays an important economic, environmental and social role (FERRAZ et al., 2010FERRAZ, J. B. et al. Production systems - An example from Brazil. Meat Science, v.84, p.238-243, 2010. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0309174009001648 >. Accessed: Dec. 09, 2020. doi: 10.1016/j.meatsci.2009.06.006.
https://www.sciencedirect.com/science/ar...
; VICENSOTTI et al., 2019VICENSOTTI, J. M. et al. Competitividade brasileira no comércio exterior da carne bovina. Revista IPecege, v.05, p.07-18, 2019. Available from: <Available from: https://revista.ipecege.org.br/Revista/article/view/372 >. Accessed: Nov. 15, 2020. doi: 10.22167/r.ipecege.2019.5.7.
https://revista.ipecege.org.br/Revista/a...
). Since 2009, with the support of the Ministry of Science, Technology, Innovations and Communications, the Nanotechnology Laboratory for Agribusiness (LNNA) at the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), located in São Carlos city, in São Paulo State, is performing research in collaboration with EMBRAPA and other public research institutions and private companies. LNNA is a reference center that enables the development of research projects of interest to agribusiness. However, in veterinary medicine, the research topics include biosensors for the diagnosis of animal diseases, veterinary drugs, and functional food packaging (EMPRAPA, 2012).
Nanotechnology applied in veterinary medicine helps impart greater safety and speed in diagnoses, improves treatment efficiency using lower doses of medication, and thus reduces costs. It also contributes to the reduction in residual drug levels, mainly in products of animal origin (UNDERWOOD et al., 2012UNDERWOOD, C. et al. Nanomedicine and veterinary science: The reality and the practicality. Veterinary Journal, v.193, p.12-23, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22365842/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.tvjl.2012.01.002.
https://pubmed.ncbi.nlm.nih.gov/22365842...
; VIDIC et al., 2017VIDIC, J. et al. Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, v.48, p.01-22, 2017.Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/28222780/ >. Accessed: Nov. 15, 2020. doi: 10.1186/s13567-017-0418-5.
https://pubmed.ncbi.nlm.nih.gov/28222780...
). However, this technology can improve the competitiveness and sustainability of Brazilian agribusiness, seeking to improve the quality of products and processes, and the development of new uses for agricultural products (MATTOSO et al., 2005MATTOSO, L. H. C. et al. The nanotechnological revolution and the potential for agribusiness. [A revolução nanotecnológica e o potencial para o agronegócio]. Revista de Política Agrícola, v.14, n.04, p.38-46, 2005. Online. Available from: <Available from: https://seer.sede.embrapa.br/index.php/RPA/article/view/551 >. Accessed: Dec. 09, 2020.
https://seer.sede.embrapa.br/index.php/R...
; EMBRAPA, 2012EMBRAPA, Empresa Brasileira de Pesquisa Agropecuária. Ministério da Agricultura, Pecuária e Abastecimento. Nanotecnologia: obter o máximo do mínimo. São Carlos, SP, 2012. Online. Available from: <Available from: https://www.agropediabrasilis.cnptia.embrapa.br/documents/181963/332763/FolderNanotecnologiaPortugues.pdf/138fdb67-88b9-407b-9d9f-61552cc1849a >. Accessed: Dec. 09, 2020.
https://www.agropediabrasilis.cnptia.emb...
).
Since, the nanotechnology market has shown to be highly promising, new products and applications are launched in practically all sectors and at an increasing speed. According to information obtained from the StatNano website database, 231 agricultural technological products are currently available on the world market, these being compounds for food supplementation, disinfectants for birds, livestock and aquaculture, vaccines and pharmacological treatment, made available by 75 companies, distributed in 26 countries (STATNANO, 2021STATNANO. 2021. Nanotechnology Products Database (StatNano). Available from: <Available from: https://statnano.com/ >. Accessed: May, 08 , 2021.
https://statnano.com/...
). Brazil, together with India, Germany, the United Kingdom, the United States of America (USA), Vietnam, Taiwan, China, Malaysia, and the Netherlands are the countries most active in promoting nanotechnology for the prosperity of agriculture. However, the USA is the country that most invests in this new technology, offering 3,056 products, varying in 433 sectors and 695 companies involved, 22 of which are agricultural products, involving 12 companies. In comparison, Brazil has 186 products, varying in 58 sectors and 90 companies, of these, nine products are from the agricultural sector, which involve eight companies active in this sector (STATNANO, 2021).
However, basic and applied research in the field of veterinary medicine is growing, and we list the main nanotechnology studies related to this sector in Brazil (Table 1). Although, still incipient, nanotechnology in veterinary medicine in Brazil has evolved gradually in the last seven years, mainly in the development of therapeutic products for the treatment of infections caused by different pathogens. Additionally, it is observed that most studies are related to research and technological innovation projects developed in educational institutions.
Different applications of nanotechnology in veterinary medicine in Brazil during the period 2013 to 2020.
CONCLUSION:
Nanotechnology has several benefits to different fields of industry and science, including human, animal and environmental areas. In veterinary medicine, the use of nanostructures in the pharmacological and immunological areas is promising. In Brazil, the use of nanotechnology in veterinary medicine; although incipient, has demonstrated many possibilities for basic and applied research and numerous advances in animal production and health, especially in the area of pharmacological therapies, which has provided promising treatments for diseases with an unfavorable prognosis.
We emphasized that nanotechnology is a recent and promising science that has been breaking many paradigms, and still needs studies to validate its safe use in veterinary medicine. Therefore, aspects related to ecotoxicity, as well as bioaccumulation of nanoparticles in animal and plant tissues must be evaluated in order to guarantee the safety of nanostructured substances. Regarding future perspectives, we believed that greater investment in science and technology could contribute to the advancement and strengthening of nanotechnology in Brazil.
ACKNOWLEDGEMENTS
This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [Grant number 420538/2018-6]; Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul [Grant number PqG/FAPERGS 27293.414.15435.20062017] and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [Grant number/Finance code 001].
REFERENCES
- ACOSTA, A. C. et al. Antibacterial behavior of polypyrrole nanoparticles against Staphylococcus aureus isolated from cows and goats with mastitis. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, v.72, n.03, p.1047-1050, 2020. Available from: <Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S010209352020000301047&lng=en&nrm=iso >. Accessed: Jan. 08, 2021. doi: 10.1590/1678-4162-10384.
» https://doi.org/10.1590/1678-4162-10384.» http://www.scielo.br/scielo.php?script=sci_arttext&pid=S010209352020000301047&lng=en&nrm=iso - ALLEMANN, E. et al. Drug-loaded nanoparticles - Preparation methods and drug targeting issues. European Journal Pharmaceutical and Biopharmaceutic, v.39, p.173-191, 1993.
- ALI, M. et al. Therapeutic efficacy of poly (lactic-co-glycolic acid) nanoparticles encapsulated ivermectin (nano-ivermectin) against brugian filariasis in experimental rodent model. Parasitology Research, v.113, p.681-691, 2014. Available from: <Available from: https://link.springer.com/article/10.1007/s00436-013-3696-5 >. Accessed: Jan. 08, 2021. doi: 10.1007/s00436-013-3696-5.
» https://doi.org/10.1007/s00436-013-3696-5.» https://link.springer.com/article/10.1007/s00436-013-3696-5 - AUCOUTURIER, J. et al. Adjuvants designed for veterinary and human vaccines. Vaccine, v.19, p.2666-2672, 2001. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/11257407/ >. Accessed: Jan. 08, 2021. doi: 10.1016/s0264-410x(00)00498-9.
» https://doi.org/10.1016/s0264-410x(00)00498-9.» https://pubmed.ncbi.nlm.nih.gov/11257407/ - BALDISSERA, M. D. et al. A nanotechnology based new approach for Trypanosoma evansi chemotherapy: In vitro and vivo trypanocidal effect of (-)-α-bisabolol, Experimental Parasitology, v.170, p.156-160, 2016. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/27693361/ >. Accessed: Jan. 21, 2021. doi: 10.1016/j.exppara.2016.09.018.
» https://doi.org/10.1016/j.exppara.2016.09.018.» https://pubmed.ncbi.nlm.nih.gov/27693361/ - BALDISSERA, M. D. et al. Dietary supplementation with nerolidol nanospheres improves growth, antioxidant status and fillet fatty acid profiles in Nile tilapia: Benefits of nanotechnology for fish health and meat quality. Aquaculture, v.516, 734635, 2020. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0044848619325670 >. Accessed: Jan. 21, 2021. doi: 10.1016/j.aquaculture.2019.734635.
» https://doi.org/10.1016/j.aquaculture.2019.734635.» https://www.sciencedirect.com/science/article/abs/pii/S0044848619325670 - BALDISSERA, M. D. et al. Diphenyl diselenide loaded nanocapsules in silver catfish feed enhance growth, improve muscle antioxidant/oxidant status and increase selenium deposition: Advantages of nanotechnology for fish health. Aquaculture Research, v.51, p.4196-4205, 2020a. Available from: <Available from: https://onlinelibrary.wiley.com/doi/10.1111/are.14761 >. Accessed: Jan. 21, 2021. doi: 10.1111/are.14761.
» https://doi.org/10.1111/are.14761.» https://onlinelibrary.wiley.com/doi/10.1111/are.14761 - BALDISSERA, M. D. et al. Nanospheres as a technological alternative to suppress hepatic cellular damage and impaired bioenergetics caused by nerolidol in Nile tilapia (Oreochromis niloticus). Naunyn-Schmiedeberg’s Archives of Pharmacology, v.393, p.751-759 2020b. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/31953674/ >. Accessed: Jan. 21, 2021. doi: 10.1007/s00210-020-01824-2.
» https://doi.org/10.1007/s00210-020-01824-2.» https://pubmed.ncbi.nlm.nih.gov/31953674/ - BAKKER-WOUDENBERG, I. M. et al. Long-circulating sterically stabilized liposomes in the treatment of infections. Methods in Enzymology, v.391, p.228-260, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/15721385/ >. Accessed: Dec. 20, 2020. doi: 10.1016/S0076-6879(05)91014-8.
» https://doi.org/10.1016/S0076-6879(05)91014-8.» https://pubmed.ncbi.nlm.nih.gov/15721385/ - BARBOSA, A. C. M. et al. Nematicidal activity of silver nanoparticles from the fungus Duddingtonia flagrans International Journal of Nanomedicine, v.14, p.2341-2348, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/31040660/ >. Accessed: Dec. 20, 2020. doi: 10.2147/IJN.S193679.
» https://doi.org/10.2147/IJN.S193679.» https://pubmed.ncbi.nlm.nih.gov/31040660/ - BENTOLILA, L. A. et al. Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine, v.50, n.04, p.493-496, 2009. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19289434/ >. Accessed: Dec. 09, 2020. doi: 10.2967 / jnumed.108.053561.
» https://doi.org/10.2967 / jnumed.108.053561.» https://pubmed.ncbi.nlm.nih.gov/19289434/ - BOTTERO, J. Y. et al. Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus Geoscience, v.347, p.35-42, 2015. Available from: <Available from: https://www.sciencedirect.com/science/article/pii/S1631071314001497 >. Accessed: Nov. 15, 2020. doi: 10.1016/j.crte.2014.10.004.
» https://doi.org/10.1016/j.crte.2014.10.004.» https://www.sciencedirect.com/science/article/pii/S1631071314001497 - BRADLEY, E. L. et al. Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science & Technology, v.22, p.604-610, 2011. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0924224411000033 >. Accessed: Dec. 09, 2020. doi: 10.1016 / j.tifs.2011.01.002.
» https://doi.org/10.1016 / j.tifs.2011.01.002.» https://www.sciencedirect.com/science/article/abs/pii/S0924224411000033 - BRANDÃO, L. N. S. et al. Standardization of unmodified gold nanoparticle (AuNPs) for detection of Actinobacillus pleuropneumoniafe in swine lungs. Pesquisa Veterinária Brasileira, v.34, n.7, p.621-625, 2014. Available from: < Available from: https://www.scielo.br/j/pvb/a/H8jfhKbHqHRsfKKgFcmcNVv/abstract/?lang=en >. Accessed: Nov. 15, 2020.
» https://www.scielo.br/j/pvb/a/H8jfhKbHqHRsfKKgFcmcNVv/abstract/?lang=en - CARD, J. W. et al. An appraisal of the published literature on the safety and toxicity of food-related nanomaterials. Critical Reviews in Toxicology, v.41, p.22-49, 2011. doi: Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21077788/ > . Accessed: Dec. 09, 2020. doi: 10.3109/10408444.2010.524636.
» https://doi.org/10.3109/10408444.2010.524636.» https://pubmed.ncbi.nlm.nih.gov/21077788/ - CHAO, J. et al. DNA nanotechnology-enabled biosensors. Biosensors and Bioelectronics, v.76, p.68-79, 2016. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0956566315302578 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.bios.2015.07.007.
» https://doi.org/10.1016/j.bios.2015.07.007.» https://www.sciencedirect.com/science/article/abs/pii/S0956566315302578 - CHEN, Z. et al. Acute toxicological effects of copper nanoparticles in vivo Toxicology Letters, v.163, p.109-120, 2006. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0378427405003176 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.toxlet.2005.10.003.
» https://doi.org/10.1016/j.toxlet.2005.10.003.» https://www.sciencedirect.com/science/article/abs/pii/S0378427405003176 - CHEN, Y. et al. Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. The Journal of Biological Chemistry, v.285, p.22639-22650, 2010. Available from: <Available from: https://www.jbc.org/article/S0021-9258(20)60297-6/fulltext >. Accessed: Jan. 08, 2021. doi: 10.1074/jbc.M110.125906.
» https://doi.org/10.1074/jbc.M110.125906.» https://www.jbc.org/article/S0021-9258(20)60297-6/fulltext - CORDEIRO, C. et al. Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar Typhimurium intracellular infection model. Antimicrobial Agents and Chemotherapy, v.44, p.533-539, 2000. Available from: <Available from: https://aac.asm.org/content/44/3/533.abstract >. Accessed: Dec. 09, 2020. doi: 10.1128/aac.44.3.533-539.2000.
» https://doi.org/10.1128/aac.44.3.533-539.2000.» https://aac.asm.org/content/44/3/533.abstract - COSTA, B. D. et al. Bone formation and osteointegration of micro and nanostructured biomaterial in sheep. Pesquisa Veterinária Brasileira , v.35, p.177-187, 2015. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_abstract&pid=S0100-736X2015000200177&lng=pt&nrm=isso >. Accessed: Dec. 08, 2020. doi: 10.1590/S0100-736X2015000200015.
» https://doi.org/10.1590/S0100-736X2015000200015.» https://www.scielo.br/scielo.php?script=sci_abstract&pid=S0100-736X2015000200177&lng=pt&nrm=isso - COUVREUR, P. et al. Nanoparticles and microparticles for the delivery of polypeptides and proteins. Advanced Drug Delivery Reviews, v.10, p.141-162, 1993. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/0169409X93900467 >. Accessed: Nov. 15, 2020. doi: 10.1016/0169-409X(93)90046-7.
» https://doi.org/10.1016/0169-409X(93)90046-7.» https://www.sciencedirect.com/science/article/abs/pii/0169409X93900467 - DANHIER, F. et al. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, v.148, p.135-146, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/20797419/ >. Accessed: Jan. 08, 2021. doi: 10.1016/j.jconrel.2010.08.027.
» https://doi.org/10.1016/j.jconrel.2010.08.027.» https://pubmed.ncbi.nlm.nih.gov/20797419/ - DO CARMO, G. M. et al. Effect of the treatment with Achyrocline satureioides (free and nanocapsules essential oil) and diminazeneaceturate on hematological and biochemical parameters in rats infected by Trypanosoma evansi Experimental Parasitology , v.149, p.39-46, 2015. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/25499512/ >. Accessed: Jan. 08, 2021. doi: 10.1016/j.exppara.2014.12.005.
» https://doi.org/10.1016/j.exppara.2014.12.005.» https://pubmed.ncbi.nlm.nih.gov/25499512/ - DRISKELL, J. D. et al. Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Analytical Chemistry, v.77, p.6147-6154, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/16194072/ >. Accessed: Nov. 15, 2020. doi: 10.1021/ac0504159.
» https://doi.org/10.1021/ac0504159.» https://pubmed.ncbi.nlm.nih.gov/16194072/ - DURÁN, N., et al. Nanocrystal technology in pharmaceuticals. Química Nova, v.33, p.151-158, 2010. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422010000100028&lng=pt&nrm=iso >. Accessed: Jan. 13, 2021. doi: 10.1590/S0100-40422010000100028.
» https://doi.org/10.1590/S0100-40422010000100028.» https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422010000100028&lng=pt&nrm=iso - DURFEY, C. L. et al. Nanotechnology-based selection of boar spermatozoa: growth development and health assessments of produced offspring. Livestock science, v.205, p.137-142, 2017. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S1871141317302895 >. Accessed: Jan. 08, 2021. doi: 10.1016/j.livsci.2017.09.024.
» https://doi.org/10.1016/j.livsci.2017.09.024.» https://www.sciencedirect.com/science/article/abs/pii/S1871141317302895 - EDWARDS, K. A et al. Analyses of liposomes. Talanta, v.68, p.1432-1441, 2006. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0039914005005436 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.talanta.2005.08.031.
» https://doi.org/10.1016/j.talanta.2005.08.031.» https://www.sciencedirect.com/science/article/abs/pii/S0039914005005436 - EGUCHI, E. S. et al. O caminho da nanotecnologia na produção animal brasileira. Pubvet, v.07, n.08, p.01-12, 2013. Available from: <Available from: http://pubvet.com.br/artigo/592/o-caminho-da-nanotecnologia-na-produccedilatildeo-animal-brasileira >. Accessed: Dec. 09, 2020. doi: 10.22256/pubvet.v7n8.1528.
» https://doi.org/10.22256/pubvet.v7n8.1528.» http://pubvet.com.br/artigo/592/o-caminho-da-nanotecnologia-na-produccedilatildeo-animal-brasileira - ELY, V. L. et al. In vitro algicidal effect of polypyrrole on Prototheca species isolates from bovine mastitis. Medical Mycology, v.58, p.1114-1119, 2020. Available from: <Available from: https://academic.oup.com/mmy/article-abstract/58/8/1114/5828677?redirectedFrom=fulltext >. Accessed: Dec. 09, 2020. doi: 10.1093/ mmy / myaa021.
» https://doi.org/10.1093/ mmy / myaa021.» https://academic.oup.com/mmy/article-abstract/58/8/1114/5828677?redirectedFrom=fulltext - EMBRAPA, Empresa Brasileira de Pesquisa Agropecuária. Ministério da Agricultura, Pecuária e Abastecimento. Nanotecnologia: obter o máximo do mínimo. São Carlos, SP, 2012. Online. Available from: <Available from: https://www.agropediabrasilis.cnptia.embrapa.br/documents/181963/332763/FolderNanotecnologiaPortugues.pdf/138fdb67-88b9-407b-9d9f-61552cc1849a >. Accessed: Dec. 09, 2020.
» https://www.agropediabrasilis.cnptia.embrapa.br/documents/181963/332763/FolderNanotecnologiaPortugues.pdf/138fdb67-88b9-407b-9d9f-61552cc1849a - FAHMY, T. M. et al. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials, v.26, p.5727-5736, 2005. Available from: <Available from: https://europepmc.org/article/med/15878378 >. Accessed: Jan. 21, 2021. doi: 10.1016/j.biomaterials.2005.02.025.
» https://doi.org/10.1016/j.biomaterials.2005.02.025.» https://europepmc.org/article/med/15878378 - FALCHI, L. et al. Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure. Theriogenology, v.85, p.1274-1281, 2016. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0093691X15006846 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.theriogenology.2015.12.011.
» https://doi.org/10.1016/j.theriogenology.2015.12.011.» https://www.sciencedirect.com/science/article/abs/pii/S0093691X15006846 - FEND, R. et al. Use of an electronic nose to diagnose Mycobacterium bovis infection in badgers and cattle. Journal of Clinical Microbiology, v.43, p.1745-1751, 2005. Available from: <Available from: https://jcm.asm.org/content/43/4/1745.short >. Accessed: Dec. 20, 2020. doi: 10.1128/JCM.43.4.1745-1751.2005.
» https://doi.org/10.1128/JCM.43.4.1745-1751.2005.» https://jcm.asm.org/content/43/4/1745.short - FERREIRA, H. S. et al. Nanotechnology: general aspects and potential applications in catalysis. Química Nova , v.32, p.1860-1870, 2009. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422009000700033 >. Accessed: Dec. 20, 2020. doi: 10.1590/S0100-40422009000700033.
» https://doi.org/10.1590/S0100-40422009000700033.» https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422009000700033 - FERRAZ, J. B. et al. Production systems - An example from Brazil. Meat Science, v.84, p.238-243, 2010. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0309174009001648 >. Accessed: Dec. 09, 2020. doi: 10.1016/j.meatsci.2009.06.006.
» https://doi.org/10.1016/j.meatsci.2009.06.006» https://www.sciencedirect.com/science/article/abs/pii/S0309174009001648 - FEUGANG, J. M. et al. Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology , v.137, n.01, p.75-81, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/31204016/ >. Accessed: Jan. 08, 2021. doi: 10.1016/j.theriogenology.2019.05.040.
» https://doi.org/10.1016/j.theriogenology.2019.05.040.» https://pubmed.ncbi.nlm.nih.gov/31204016/ - FIGUEIREDO, M. R. P. et al. Use of indigestible markers to estimate the apparent dry matter digestibility of diets containing a cocoa by-product. Semina: Ciências Agrárias, v.40, n.06, p.2771-2782, 2019. Available from: <Available from: http://dx.doi.org/10.5433/1679-0359.2019v40n6p2771 >. Accessed: Jan. 08, 2021. doi: 10.5433/1679-0359.2019v40n6p2771.
» https://doi.org/10.5433/1679-0359.2019v40n6p2771.» http://dx.doi.org/10.5433/1679-0359.2019v40n6p2771 - FEYNMAN, R. P. There’s plenty of room at the bottom. Engineering and Science, v.23, p.22-36, 1960. Available from: <Microsoft Word - Feynman.doc (nanoparticles.org)>. Accessed: Nov. 15, 2020.
- FREITAS JR, R.A. What is nanomedicine? Nanomedicine, v.01, p.02-09, 2005. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S1549963404000048 >. Accessed: Nov. 15, 2020. doi: 10.1016 / j.nano.2004.11.003.
» https://doi.org/10.1016 / j.nano.2004.11.003.» https://www.sciencedirect.com/science/article/abs/pii/S1549963404000048 - GALL, G. O. et al. Anesthetic induction with nanoemulsion or lipid emulsion of propofol during consecutive days in cats. Ciência Rural, v.43, p.2011-2017, 2013. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782013001100015 >. Accessed: Dec. 09, 2020. doi: 10.1590/S0103-84782013001100015.
» https://doi.org/10.1590/S0103-84782013001100015.» https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782013001100015 - GREENWOOD, D. L. V. et al. Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads. Vaccine , v.26, p.2706-2713, 2008. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/18448209/ >. Accessed: Dec. 20, 2020. doi: 10.1016/j.vaccine.2008.03.025.
» https://doi.org/10.1016/j.vaccine.2008.03.025.» https://pubmed.ncbi.nlm.nih.gov/18448209/ - HALFPENNY, K. C. et al. Nanoparticle detection of respiratory infection. Nanomedicine and Nanobiotechnology, v.02, p.277-290, 2010. Available from: <Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/wnan.83 >. Accessed: Dec. 09, 2020. doi: 10.1002/wnan.83.
» https://doi.org/10.1002/wnan.83.» https://onlinelibrary.wiley.com/doi/full/10.1002/wnan.83 - HANAFY, M. H., 2018. Myconanotechnology in veterinary sector: Status quo and future Perspectives. International Journal of Veterinary Science and Medicine, v.06, p.270-273, 2018. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/30564608/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.ijvsm.2018.11.003.
» https://doi.org/10.1016/j.ijvsm.2018.11.003.» https://pubmed.ncbi.nlm.nih.gov/30564608/ - HE, X. et al. Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, v.24, p.671-681, 2016. Available from: <Available from: https://www.sciencedirect.com/science/article/pii/S1021949816300758 >. Accessed: Dec. 20, 2020. doi: 10.1016/j.jfda.2016.06.001.
» https://doi.org/10.1016/j.jfda.2016.06.001.» https://www.sciencedirect.com/science/article/pii/S1021949816300758 - HO, C. C. et al. Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung. Nanotoxicology, v.07, p.105-115, 2013. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22107365/ >. Accessed: Jan. 08, 2021. doi: 10.3109/17435390.2011.635814.
» https://doi.org/10.3109/17435390.2011.635814.» https://pubmed.ncbi.nlm.nih.gov/22107365/ - HOFHEINZ, R. D. et al. Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs, v.16, p.691-707, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/16027517/ >. Accessed: Dec. 09, 2020. doi: 10.1097/01.cad.0000167902.53039.5a.
» https://doi.org/10.1097/01.cad.0000167902.53039.5a.» https://pubmed.ncbi.nlm.nih.gov/16027517/ - IIJIMA, S. Helical microtubules of graphitic carbon. Nature, v.354, p.56-58, 1991. Available from: <Available from: https://www.nature.com/articles/354056a0 >. Accessed: Dec. 09, 2020. doi: 10.1038/354056a0.
» https://doi.org/10.1038/354056a0.» https://www.nature.com/articles/354056a0 - IRACHE, J. M. et al. Nanomedicine : novel approaches in human and veterinary therapeutics. Veterinary Parasitology, v.180, p.47-71, 2011. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21680101/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.vetpar.2011.05.028.
» https://doi.org/10.1016/j.vetpar.2011.05.028.» https://pubmed.ncbi.nlm.nih.gov/21680101/ - ISHIHARA, T. et al. Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents. International Journal of Pharmaceutics, v.385, p.170-175, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19837147/ >. Accessed: Dec. 09, 2020. doi: 10.1016/j.ijpharm.2009.10.025.
» https://doi.org/10.1016/j.ijpharm.2009.10.025.» https://pubmed.ncbi.nlm.nih.gov/19837147/ - HASSAN, D. et al. Antiprotozoal activity of silver nanoparticles against Cryptosporidium parvum oocysts: New insights on their feasibility as a water disinfectant. Journal of Microbiological Methods, v.22, 105698, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/31446036/ >. Accessed: Dec. 20, 2020. doi: 10.1016/j.mimet.2019.105698.
» https://doi.org/10.1016/j.mimet.2019.105698.» https://pubmed.ncbi.nlm.nih.gov/31446036/ - JAGIELSKI, T. et al. The activity of silver nanoparticles against microalgae of the Prototheca genus. Nanomedicine , v.13, p.1025-1036, 2018. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/29790400/ >. Accessed: Jan. 08, 2021. doi: 10.2217/nnm-2017-0370.
» https://doi.org/10.2217/nnm-2017-0370.» https://pubmed.ncbi.nlm.nih.gov/29790400/ - JAGUEZESKI, A. M. et al. Effect of free and nano-encapsulated curcumin on treatment and energetic metabolism of gerbils infected by Listeria monocytogenes Microbial Pathogenesis, v.134, 103564, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/31163248/ >. Accessed: Jan. 08, 2021. doi: 10.1016/j.micpath.2019.103564.
» https://doi.org/10.1016/j.micpath.2019.103564.» https://pubmed.ncbi.nlm.nih.gov/31163248/ - JI, J. H. et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, v.19, p.857-871, 2007. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/17687717/ >. Accessed: Jan. 08, 2021. doi: 10.1080/08958370701432108.
» https://doi.org/10.1080/08958370701432108.» https://pubmed.ncbi.nlm.nih.gov/17687717/ - KHAN, Y. A. et al. Anthelmintic effect of biocompatible zinc oxide nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PLoS One, v.10, e0133086, 2015. Available from: <Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133086 >. Accessed: Jan. 08, 2021. doi: 10.1371/journal.pone.0133086.
» https://doi.org/10.1371/journal.pone.0133086.» https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133086 - KING, T. et al. Nanotechnology in the food sector and potential applications for the poultry industry. Trends in Food Science & Technology , v.72, p.62-73, 2018. Available from: <Available from: https://www.sciencedirect.com/science/article/pii/S0924224417303448 >. Accessed: Jan. 21, 2021. doi: 10.1016 / j.tifs.2017.11.015.
» https://doi.org/10.1016 / j.tifs.2017.11.015.» https://www.sciencedirect.com/science/article/pii/S0924224417303448 - KROTO, H. W. et al.C60: Buckminsterfullerene. Nature , v.318, p.162-163, 1985. Available from: <Available from: https://www.nature.com/articles/318162a0#citeas >. Accessed: Nov. 15, 2020. doi: 10.1038/318162a0.
» https://doi.org/10.1038/318162a0.» https://www.nature.com/articles/318162a0#citeas - KROUBI, M. et al. Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology, v.21, p.01-08, 2010. Available from: <Available from: https://iopscience.iop.org/article/10.1088/0957-4484/21/50/505102/meta >. Accessed: Jan. 08, 2021. doi: 10.1088/0957-4484/21/50/505102.
» https://doi.org/10.1088/0957-4484/21/50/505102.» https://iopscience.iop.org/article/10.1088/0957-4484/21/50/505102/meta - KUMANAN, V. et al. A biosensor assay for the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples. Journal of Veterinary Science, v.10, p.35-42, 2009. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19255522/ >. Accessed: Jan. 08, 2021. doi: 10.4142/jvs.2009.10.1.35.
» https://doi.org/10.4142/jvs.2009.10.1.35.» https://pubmed.ncbi.nlm.nih.gov/19255522/ - LEE, J. H. et al. Combination Drug Delivery Approaches in Metastatic Breast Cancer. Journal of Drug Delivery, 2012, 915375. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22619725/ >. Accessed: Dec. 20, 2020. doi: 10.1155/2012/915375.
» https://doi.org/10.1155/2012/915375.» https://pubmed.ncbi.nlm.nih.gov/22619725/ - LIU, Y. et al. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer, v.120, p.2527-2537, 2007. Available from: <Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.22709 >. Accessed: Nov. 15, 2020. doi: 10.1002/ijc.22709.
» https://doi.org/10.1002/ijc.22709.» https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.22709 - LOOK, M. et al. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Advanced Drug Delivery Reviews, v.62, p.378-393, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19922750/ >. Accessed: Dec. 09, 2020. doi: 10.1016/j.addr.2009.11.011.
» https://doi.org/10.1016/j.addr.2009.11.011.» https://pubmed.ncbi.nlm.nih.gov/19922750/ - LUCHINI, A. et al. Nanoparticle technology: Addressing the fundamental roadblocks to protein biomarker Discovery. Current Molecular Medicine, v.10, p.133-141, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/20196732/ >. Accessed: Dec. 09, 2020. doi: 10.2174/156652410790963268.
» https://doi.org/10.2174/156652410790963268.» https://pubmed.ncbi.nlm.nih.gov/20196732/ - LUIS, A. I. S. Nanotecnologia e aquicultura: desenvolvimento de sistemas para controle de doenças baseados em nanopartículas de zeína contendo eugenol e óleos essenciais de alho. 2017. 87f. Dissertação (Mestrado) - Curso de Pós-graduação em Ciências Ambientais, Universidade Estadual Paulista “Júlio de Mesquita Filho”. Instituto de Ciência e Tecnologia (Câmpus de Sorocaba).
- MACHADO, I. R. L. et al. Carbon nanotubes: potential use in veterinary medicine. Ciência Rural , v.44, p.1823-1829, 2014. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782014001001823 >. Accessed: Dec. 20, 2020. doi: 10.1590/0103-8478cr20140003.
» https://doi.org/10.1590/0103-8478cr20140003.» https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782014001001823 - MAEDA, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chemistry, v.21, p.797-802, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/20397686/ >. Accessed: Jan. 08, 2021. doi: 10.1021/bc100070g.
» https://doi.org/10.1021/bc100070g.» https://pubmed.ncbi.nlm.nih.gov/20397686/ - MATTEUCCI, M. L. et al. The role of liposomes in drug delivery and diagnostic imaging: A review. Veterinary Radiology and Ultrasound, v.41, p.100-107, 2000. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/10779068/ >. Accessed: Dec. 09, 2020.
» https://pubmed.ncbi.nlm.nih.gov/10779068/ - MATTOSO, L. H. C. et al. The nanotechnological revolution and the potential for agribusiness. [A revolução nanotecnológica e o potencial para o agronegócio]. Revista de Política Agrícola, v.14, n.04, p.38-46, 2005. Online. Available from: <Available from: https://seer.sede.embrapa.br/index.php/RPA/article/view/551 >. Accessed: Dec. 09, 2020.
» https://seer.sede.embrapa.br/index.php/RPA/article/view/551 - METSELAAR, J. M. et al. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis and Rheumatism, v.48, p.2059-2066, 2003. Available from: <Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/art.11140 >. Accessed: Dec. 09, 2020. doi: 10.1002/art.11140.
» https://doi.org/10.1002/art.11140.» https://onlinelibrary.wiley.com/doi/full/10.1002/art.11140 - MISHRA, A. et al. Biosynthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. Journal of Nanoscience andNanotechnology , v.11, p.243-248, 2011. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21446434/ >. Accessed: Jan. 08, 2021. doi: 10.1166/jnn.2011.3265.
» https://doi.org/10.1166/jnn.2011.3265.» https://pubmed.ncbi.nlm.nih.gov/21446434/ - MOSS, P. C. B. et al. Validation of Nanolipe ® as method to assess the apparent digestibility of nutrients on horses. Arquivos Brasileiros de Medicina Veterinária e Zootecnia , v.69, n.03, p.687-694, 2017. Available from: <Available from: https://www.scielo.br/scielo.php?pid=S0102-09352017000300687&script=sci_abstract&tlng=pt >. Accessed: Dec. 20, 2020. doi: 10.1590/1678-4162-8270.
» https://doi.org/10.1590/1678-4162-8270.» https://www.scielo.br/scielo.php?pid=S0102-09352017000300687&script=sci_abstract&tlng=pt - NORDLY, P. et al. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opinion on Drug Delivery, v.06, p.657-672, 2009. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19538037/ >. Accessed: Dec. 20, 2020. doi: 10.1517/17425240903018863.
» https://doi.org/10.1517/17425240903018863.» https://pubmed.ncbi.nlm.nih.gov/19538037/ - O’BRIEN, N. et al. Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, v.45, p.992-1007, 2010. Available from: <Available from: https://www.tandfonline.com/doi/abs/10.1080/10934521003772410 >. Accessed: Nov. 15, 2020. doi: 10.1080/10934521003772410.
» https://doi.org/10.1080/10934521003772410.» https://www.tandfonline.com/doi/abs/10.1080/10934521003772410 - O’CONNELL, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science, v.297, p.593-596, 2002. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/12142535/ >. Accessed: Dec. 09, 2020. doi: 10.1126/science.1072631.
» https://doi.org/10.1126/science.1072631.» https://pubmed.ncbi.nlm.nih.gov/12142535/ - OLIVEIRA, H. P. et al. Antimicrobial activity of silver nanoparticles synthesized by the fungus Curvularia inaequalis African Journal of Biotechnology, v.12, p.2917- 2923, 2013. Available from: <Available from: https://academicjournals.org/article/article1380722870_de%20Oliveira%20et%20al.pdf >. Accessed: Jan. 08, 2021. doi: 10.5897/AJB2013.12375.
» https://doi.org/10.5897/AJB2013.12375.» https://academicjournals.org/article/article1380722870_de%20Oliveira%20et%20al.pdf - PADMAVATHY, N. et al. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Science and Technology of Advanced Materials, v.09, 035004, 2008. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/27878001/ >. Accessed: Dec. 20, 2020. doi: 10.1088/1468-6996/9/3/035004.
» https://doi.org/10.1088/1468-6996/9/3/035004.» https://pubmed.ncbi.nlm.nih.gov/27878001/ - PARVEEN, S. et al. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine : Nanotechnology , Biology and Medicine, v.08, p.147-166, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21703993/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.nano.2011.05.016.
» https://doi.org/10.1016/j.nano.2011.05.016.» https://pubmed.ncbi.nlm.nih.gov/21703993/ - PASCHOALINO, M. P., et al. Nanomaterials and the environment. Química Nova , v.33, n. 2, p.421-430, 2010. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422010000200033&lng=pt&nrm=iso&tlng=pt >. Accessed: May, 05, 2021. doi: 10.1590/S0100-40422010000200033.
» https://doi.org/10.1590/S0100-40422010000200033.» https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422010000200033&lng=pt&nrm=iso&tlng=pt - PELAZ, B. et al. Diverse applications of nanomedicine. ACS Nano, v.11, p.2313-2381, 2017. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/28290206/ >. Accessed: Nov. 15, 2020. doi: 10.1021/acsnano.6b06040.
» https://doi.org/10.1021/acsnano.6b06040.» https://pubmed.ncbi.nlm.nih.gov/28290206/ - PETERS, R. J. et al. Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science & Technology , v.54, p.155-164, 2016. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0924224415300467 >. Accessed: Nov. 15, 2020. doi: 10.1016/j.tifs.2016.06.008 .
» https://www.sciencedirect.com/science/article/abs/pii/S0924224415300467 - PROW, T. W. et al. Nanomedicine - nanoparticles, molecular biosensors and targeted gene/drug delivery for combined single-cell diagnostics and therapeutics. Advanced Biomedical and Clinical Diagnostic Systems II, v.5318, p.01-11, 2004. doi: 10.1117/12.547922.
» https://doi.org/10.1117/12.547922. - PROW, T. W. et al. Biosensor-controlled gene therapy/drug delivery with nanoparticles for nanomedicine. Proceedingsof SPIE, v.5692, p.199-208 , 2005. doi: 10.1117/12.589422.
» https://doi.org/10.1117/12.589422. - QUINA, F. H. Nanotecnologia e o meio ambiente: perspectivas e riscos. Química Nova , v.27, p.1028-1029, 2004. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422004000600031 >. Accessed: Nov. 15, 2020. doi: 10.1590/S0100-40422004000600031.
» https://doi.org/10.1590/S0100-40422004000600031.» https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422004000600031 - REHMAN, A. et al. In vitro anthelmintic effect of biologically synthesized silver nanoparticles on liver amphistome, Gigantocotyle explanatum Experimental Parasitology , v.198, p.95-104, 2018. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S0014489418304624 >. Accessed. Jan. 08 , 2021. doi: 10.1016/j.exppara.2019.02.005.
» https://doi.org/10.1016/j.exppara.2019.02.005.» https://www.sciencedirect.com/science/article/abs/pii/S0014489418304624 - RIBEIRO, J. C. et al. Efficacy of free and nanoencapsulated Eucalyptus citriodora essential oils on sheep gastrointestinal nematodes and toxicity for mice. Veterinary Parasitology , v.204, p. 02-08 , 2014. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/24929446/ >. Accessed: Dec. 20, 2020. doi: 10.1016/j.vetpar.2014.05.026.
» https://doi.org/10.1016/j.vetpar.2014.05.026.» https://pubmed.ncbi.nlm.nih.gov/24929446/ - ROCHA, M. S. T. et al. Photodynamic therapy for cutaneous hemangiosarcoma in dogs. Photodiagnosis and Photodynamic Therapy, v.27, p.39-43, 2019. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S1572100019301735 >. Accessed: Dec. 09, 2020. doi: 10.1016/j.pdpdt.2019.05.026.
» https://doi.org/10.1016/j.pdpdt.2019.05.026.» https://www.sciencedirect.com/science/article/abs/pii/S1572100019301735 - ROCO, M. C. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. Journal of Nanoparticle Research, v.13, p.427-445, 2011. Available from: <Available from: https://link.springer.com/article/10.1007/s11051-010-0192-z >. Accessed: Nov. 15, 2020. doi: 10.1007/s11051-010-0192-z.
» https://doi.org/10.1007/s11051-010-0192-z.» https://link.springer.com/article/10.1007/s11051-010-0192-z - ROSA, J. M. A. et al. Molecular diagnosis of canine visceral leishmaniasis through the technique of probe gold nanoparticles (AuNPprobes). Semina: Ciências Agrárias , v.34, p.3777-3786, 2013. Available from: <Available from: https://www.redalyc.org/pdf/4457/445744138006.pdf >. Accessed: Jan. 08 , 2021. doi: 10.5433/1679-0359.2013v34n6Supl2p3777.
» https://doi.org/10.5433/1679-0359.2013v34n6Supl2p3777.» https://www.redalyc.org/pdf/4457/445744138006.pdf - ROSE, J. S. et al. Extended-duration analgesia: Update on microspheres and liposomes. Regional Anesthesia and Pain Medicine, v.30, p.275-285, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/15898031/ >.Accessed: Dec. 09, 2020. doi: 10.1016/j.rapm.2005.01.004.
» https://doi.org/10.1016/j.rapm.2005.01.004.» https://pubmed.ncbi.nlm.nih.gov/15898031/ - SAGAVE, L. et al. Melaleuca alternifolia activity in nanoformulations and terpinen-4-ol against Rhodococcus equi isolates. Arquivos Brasileiros de Medicina Veterinária e Zootecnia , v.67, p.221-226, 2015. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352015000100221 >. Accessed: Dec. 09, 2020. doi: 10.1590/1678-7454.
» https://doi.org/10.1590/1678-7454.» https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352015000100221 - SAHOO, S. K. et al. Nanotech approaches to drug delivery and imaging. Drug Discovery Today, v. 08 , p.1112-1120, 2003. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/14678737/ >. Accessed: Nov. 15, 2020. doi: 10.1016/s1359-6446(03)02903-9.
» https://doi.org/10.1016/s1359-6446(03)02903-9.» https://pubmed.ncbi.nlm.nih.gov/14678737/ - SANTANA, R. C. M. et al. Use of nanoparticulated antimicrobians to treat subclinical mastitis of ewes during the dry period. Pesquisa Veterinária Brasileira , v.36, p.826-830, 2016. Available from: <Available from: https://www.scielo.br/scielo.php?pid=S0100-736X20160009008 26&script=sci_abstract&tlng=pt >. Accessed: Dec. 20, 2020. doi: 10.1590/s0100-736x2016000900006.
» https://doi.org/10.1590/s0100-736x2016000900006.» https://www.scielo.br/scielo.php?pid=S0100-736X20160009008 26&script=sci_abstract&tlng=pt - SCHAFFAZICK, S. R. et al. Physicochemical characterization and stability of the polymeric nanoparticle systems for Drug administration. Química Nova , v.26, p.726-737, 2003. Available from: <Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422003000500017 >. Accessed: Nov. 15, 2020. doi: 10.1590/S0100-40422003000500017.
» https://doi.org/10.1590/S0100-40422003000500017.» https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422003000500017 - SCHRAND, A. M. et al. Metal-based nanoparticles and their toxicity assessment. Nanomedicine and Nanobiotechnology, v.02, p.544-568, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/20681021/ >. Accessed: Nov. 15, 2020. doi: 10.1002/wnan.103.
» https://doi.org/10.1002/wnan.103.» https://pubmed.ncbi.nlm.nih.gov/20681021/ - SHAKIR, M. et al. Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: bio-inspired nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules, v.111, p.903-916, 2018. Available from: <Available from: https://www.sciencedirect.com/science/article/abs/pii/S014181301733698X >. Accessed: Dec. 09, 2020. doi: 10.1016/j.ijbiomac.2018.01.035.
» https://doi.org/10.1016/j.ijbiomac.2018.01.035.» https://www.sciencedirect.com/science/article/abs/pii/S014181301733698X - SMITH, L. et al. Nanoparticles in Cancer Imaging and Therapy. Journal of Nanomaterials, p.01-07, 2012. Available from: <Available from: https://www.hindawi.com/journals/jnm/2012/891318/ >. Accessed: Dec. 20, 2020. doi: 10.1155/2012/891318.
» https://doi.org/10.1155/2012/891318.» https://www.hindawi.com/journals/jnm/2012/891318/ - SMITH, D. M. et al. Applications of nanotechnology for immunology. Nature Immunology, v.13, p.592-605, 2013. Available from: <Available from: https://www.nature.com/articles/nri3488 >. Accessed: Dec. 20, 2020. doi: 10.1038/nri3488.
» https://doi.org/10.1038/nri3488.» https://www.nature.com/articles/nri3488 - SOLANS, C. et al. Nanoemulsions. Current Opinion in Colloid & Interface Science , v.10, p.102-110, 2005. Available from: <Available from: https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-20665-8_27 >. Accessed: Nov. 15, 2020. doi: 10.1007/978-3-642-20665-8_27.
» https://doi.org/10.1007/978-3-642-20665-8_27.» https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-20665-8_27 - SOUZA, C. F. et al. Nanotechnology improves the therapeutic efficacy of Melaleuca alternifolia essential oil in experimentally infected Rhamdia quelen with Pseudomonas aeruginosa Aquaculture , v.473, p.169-171, 2017. Available from: <https://www.sciencedirect.com/science/article/abs/pii/S0044848617301370>. Accessed: Jan. 08 , 2021. doi: 10.1016/j.aquaculture.2017.02.014.
» https://doi.org/10.1016/j.aquaculture.2017.02.014. - STATNANO. 2021. Nanotechnology Products Database (StatNano). Available from: <Available from: https://statnano.com/ >. Accessed: May, 08 , 2021.
» https://statnano.com/ - SZEBENI, J. et al. Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. Journal of Liposome Research, v.17, p.107-117, 2007. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/17613700/ >. Accessed: Nov. 15, 2020. doi: 10.108 0/08 982100701375118.
» https://doi.org/10.108 0/08 982100701375118.» https://pubmed.ncbi.nlm.nih.gov/17613700/ - THAKUR, N. et al. Nanoemulsions: A Review on Various Pharmaceutical Application. Global Journal of Pharmacology, v.06, p.222-225, 2012. Available from: <Available from: https://idosi.org/gjp/6(3)12/10.pdf >. Accessed: Nov. 15, 2020. doi: 10.5829/idosi.gjp.2012.6.3.65135.
» https://doi.org/10.5829/idosi.gjp.2012.6.3.65135.» https://idosi.org/gjp/6(3)12/10.pdf - TOMAR, R. S. et al. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus Journal of Helminthology, v.91, p.454-461, 2017. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/27374616/ >. Accessed: Jan. 08 , 2021. doi: 10.1017/S0022149X16000444.
» https://doi.org/10.1017/S0022149X16000444.» https://pubmed.ncbi.nlm.nih.gov/27374616/ - TRONCARELLI, M. Z. et al. Safety of a nanopropolis formulation intended for intramammary treatment of bovine mastitis in organic dairy herds. Revista Brasileira de Higiene e Sanidade Animal , v. 08 , p.520-527, 2014. Available from: <Available from: http://hdl.handle.net/11449/1408 74 >. Accessed: Dec. 20, 2020.
» http://hdl.handle.net/11449/1408 74 - UNDERWOOD, C. et al. Nanomedicine and veterinary science: The reality and the practicality. Veterinary Journal, v.193, p.12-23, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22365842/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.tvjl.2012.01.002.
» https://doi.org/10.1016/j.tvjl.2012.01.002.» https://pubmed.ncbi.nlm.nih.gov/22365842/ - VALENTE, J. S. S. et al. In Vitro Activity of Melaleuca alternifolia (Tea Tree) in Its Free Oil and Nanoemulsion Formulations Against Pythium insidiosum Mycopathologia, v.181, p.865-869, 2016. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/27544535/ >. Accessed: Jan. 21, 2021. doi: 10.1007/s11046-016-0051-2.
» https://doi.org/10.1007/s11046-016-0051-2.» https://pubmed.ncbi.nlm.nih.gov/27544535/ - VALENTE, J. S. S. et al. In vitro anti-Pythium insidiosum activity of biogenic silver nanoparticles. Medical Mycology , v.57, p.858-863, 2019. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/30597067/ >. Accessed: Jan. 21, 2021. doi: 10.1093/mmy/myy147.
» https://doi.org/10.1093/mmy/myy147.» https://pubmed.ncbi.nlm.nih.gov/30597067/ - VALENTE, J. S. S. et al. Biogenic silver nanoparticles in the treatment of experimental pythiosis Bio-AgNP in pythiosis therapy. Medical Mycology , v.58, p.913-918, 2020. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/32030424/ >. Accessed: Jan. 21, 2021. doi: 10.1093/mmy/myz141.
» https://doi.org/10.1093/mmy/myz141.» https://pubmed.ncbi.nlm.nih.gov/32030424/ - VANDAMME, T. F. et al. Low-energy nanoemulsification to design veterinary controlled drug delivery devices. International Journal of Nanomedicine , v.05, p.867-873, 2010. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/21042549/ >. Accessed: Nov. 15, 2020. doi: 10.2147/IJN.S13273.
» https://doi.org/10.2147/IJN.S13273.» https://pubmed.ncbi.nlm.nih.gov/21042549/ - VICENSOTTI, J. M. et al. Competitividade brasileira no comércio exterior da carne bovina. Revista IPecege, v.05, p.07-18, 2019. Available from: <Available from: https://revista.ipecege.org.br/Revista/article/view/372 >. Accessed: Nov. 15, 2020. doi: 10.22167/r.ipecege.2019.5.7.
» https://doi.org/10.22167/r.ipecege.2019.5.7.» https://revista.ipecege.org.br/Revista/article/view/372 - VIDIC, J. et al. Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, v.48, p.01-22, 2017.Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/28222780/ >. Accessed: Nov. 15, 2020. doi: 10.1186/s13567-017-0418-5.
» https://doi.org/10.1186/s13567-017-0418-5.» https://pubmed.ncbi.nlm.nih.gov/28222780/ - VON SAMSON-HIMMELSTJERNA, G. et al. Will technology provide solutions for drug resistance in veterinary helminths? Veterinary Parasitology . v.132, p.223-239, 2005. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/16118040/ >. Accessed: Nov. 15, 2020. doi: 10.1016/j.vetpar.2005.07.014.
» https://doi.org/10.1016/j.vetpar.2005.07.014.» https://pubmed.ncbi.nlm.nih.gov/16118040/ - WEIR, A. et al. Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, v.46, p.2242-2250, 2012. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22260395/ >. Accessed: Dec. 20, 2020. doi: 10.1021/es204168d.
» https://doi.org/10.1021/es204168d.» https://pubmed.ncbi.nlm.nih.gov/22260395/ - WELLS, P. G, et al. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicological Science s, v.108 , p.4-18, 2009. Available from: <Available from: https://academic.oup.com/toxsci/article/108 /1/4/1673173 >. Accessed: May, 05, 2021. doi: 10.1093/toxsci/kfn263.
» https://doi.org/10.1093/toxsci/kfn263.» https://academic.oup.com/toxsci/article/108 /1/4/1673173 - YUAN, P. et al. Multicolor quantum dot-encoded microspheres for the fluoroimmunoassays of chicken newcastle disease and goat poxvírus. Journal of Nanoscience and Nanotechnology , v.09, p.3092-3098, 2009. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/19452974/ >. Accessed: Dec. 09, 2020. doi: 10.1166/jnn.2009.009.
» https://doi.org/10.1166/jnn.2009.009.» https://pubmed.ncbi.nlm.nih.gov/19452974/ - ZHAO, K. et al. IgA response and protection following nasal vaccination of chickens with newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles. Scientific Reports, v.12, 25720, 2016. Available from: <Available from: https://www.nature.com/articles/srep25720 >. Accessed: Dec. 20, 2020. doi: 10.1038/srep25720.
» https://doi.org/10.1038/srep25720.» https://www.nature.com/articles/srep25720 - ZHAO, K. et al. Enhancing Mucosal Immune Response of Newcastle Disease Virus DNA Vaccine Using N-2-Hydroxypropyl Trimethylammonium Chloride Chitosan and N,O-Carboxymethyl Chitosan Nanoparticles as Delivery Carrier. Molecular Pharmaceutics, v.15, p.226-237, 2018. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/29172532/ >. Accessed: Dec. 20, 2020. doi: 10.1021/acs.molpharmaceut.7b008 26.
» https://doi.org/10.1021/acs.molpharmaceut.7b008 26» https://pubmed.ncbi.nlm.nih.gov/29172532/
-
CR-2021-0195.R1
Publication Dates
-
Publication in this collection
22 Nov 2021 -
Date of issue
2022
History
-
Received
12 Mar 2021 -
Accepted
15 July 2021 -
Reviewed
19 Sept 2021