Acessibilidade / Reportar erro

The Genus Psychotria: Phytochemistry, Chemotaxonomy, Ethnopharmacology and Biological Properties

Abstract

Psychotria genus (Rubiaceae) is featured into the angiosperm, being the most speciose genus comprising approximately 1600 species. The available references demonstrate that Psychotria has several uses on traditional medicine including spiritual and cultural purposes, and presents great potential on pharmacological properties, especially the one related to neurodegenerative diseases. Despite its wide biological properties, this genus has shown complex phylogenetic analysis due to lack of chemotaxonomic information. In recent years, the interest in these plants has increased considerably and many active compounds have been isolated. Phytochemical investigations described in the literature confirmed the indole alkaloids as the major compounds and besides that, another particular chemical constituent are cyclic peptides, known as cyclotides. This present review will cover the relevant literature from 1962 until 2015, and outlines the current data on taxonomy, chemotaxonomy, traditional uses, pharmacological properties, chemical composition and ecological approach from Psychotria genus.

Keywords:
Psychotria; alkaloids; chemotaxonomy; ethnopharmacology; phytochemistry


1. Introduction

It is believed that about 80% of the population worldwide, especially Asian and African countries use plants and herbal medicines as a source of medicinal agents and primary health care. Traditional medicine is an important form of health care for many people and covers a wide variety of therapies and practices, which vary from country to country.11 http://www.who.int/medicines/areas/traditional/en, accessed in May 2016.
http://www.who.int/medicines/areas/tradi...
Many useful drugs were inspired from plants sources and nature continues to be a major source of new structural leads, and effective drug development.22 Cragg, G. M.; Newman, D. J.; Biochim. Biophys. Acta 2013, 1830, 3670. Thus, based on this estimates it is of great importance the proper identification and classification of plant species.

The genus Psychotria belongs to the Rubiaceae family (subfamily Rubioideae, tribe Psychotrieae) and is the most speciose angiosperm genera (flowering plants) comprising approximately 1600 species. These species are mostly shrubs, although are known, vines, herbaceous and epiphytes, widely distributed in tropical and pantropical countries.33 Hamilton, C. W.; Ann. Mo. Bot. Gard. 1989, 76, 67.,44 Taylor, C. M.; Opera Bot. Belg. 1996, 7, 261. In South America countries the leaves of P. viridis is largely used by Amazon indigenous peoples as a component of the hallucinogenic drink "ayahuasca". This tea has been used for medicinal, spiritual and cultural purposes since pre-Columbian times.55 McKenna, D. J.; Towers, G. H. N.; Abbot, F. J.; J. Ethnopharmacol. 1984, 10, 195.

6 Elisabetsky, E.; Castilhos, Z. C.; Int. J. Crude Drug Res. 1990, 28, 49.

7 Carlini, E. A.; Pharmacol., Biochem. Behav. 2003, 75, 501.
-88 Tupper, K. W.; Int. J. Drug Policy 2008, 19, 297. Some other plants from the genus Psychotria (leaves, roots and rhizomes) have been widely used in traditional medicines for treating bronchial and gastrointestinal disorders such as cough, bronchitis, ulcer and stomachache. Also, they are commonly used for infections of the female reproductive system.99 Perry, L. M.; Medicinal Plants of East and Southeast Asia: Attributed Properties; The MIT Press: Cambridge, USA, 1980.

Besides the variety of ethnopharmacology uses the taxonomy of Psychotria genus is very complex and a comprehensive phylogenetic analysis of this genus lack diagnostic characters. Until now, schizocarps and bacterial leaf nodules have been used for recognizing formal groups in Psychotrieae, but a robust phylogeny of the tribe, including their evolution and taxonomic value have not been described.1010 Razafimandimbison, S. G.; Taylor, C. M.; Wikström, N.; Pailler, T.; Khodabandeh, A.; Bremer, B.; Am. J. Bot. 2014, 101, 1102.

An increasing number of phytochemical studies have been investigated in Psychotria plants in the last decade contributing significantly to the ethnobotanical, pharmacological and chemotaxonomic studies in addition to the molecular phylogenetic analysis.1111 Nepokroeff, M.; Bremer, B.; Sytsma, K.; Syst. Bot. 1999, 24, 5. The genus Psychotria can be characterized as an abundant source of indole, monoterpene indole, quinoline and isoquinoline alkaloids as well as flavonoids, coumarins, terpenoids and cyclic peptides that might be responsible for a wide range of biological activities (cytotoxicity, analgesics, antivirals, antifungals and modulators of the activity of the central nervous system) found on those species.1212 Pimenta, A. T. A.; Uchôa, D. E. A.; Braz-Filho, R.; de Souza, E. B.; Silveira, E. R.; Lima, M. A. S.; J. Braz. Chem. Soc. 2011, 22, 2216.,1313 Benevides, P. J. C.; Young, M. C. M.; Bolzani, V. S.; Pharm. Biol. 2004, 42, 565.

The purpose of this review is to provide an update of the recent ethnopharmacology, taxonomy, chemotaxonomy, chemical approach, pharmacological and ecological properties of the extracts and isolated compounds identified in some plants belonging to the genus Psychotria.

2. Method

In the present review, information on Psychotria genus was gathered via searching scientific databases including PubMed, Elsevier, Google Scholar, Scopus, Web of Science, Cybase and SciFinder by using the keyword Psychotria.

In order to retrieve the available literature pertaining to this genus and concisely illustrate it using an informative graph, a SciFinder search was performed in September 2015. Figure 1 shows the number of articles retrieved when using the keyword Psychotria for year, which demonstrate the relevance of this genus. It is remarkable the large increase in publications in recent years; whereas in 1995 had been described about 10 scientific papers, in 2014 more than 50 scientific papers have been published on Psychotria genus and this number continues to increase in 2015.

Figure 1
Results of SciFinder search for Psychotria genus publications up to 2015.

3. Taxonomy and Chemotaxonomic Approach of Genus Psychotria

The tribes Palicoureeae and Psychotrieae include about 91% of the species of the Psychotrieae alliance and about 24% of Rubiaceae as a whole. Members of these groups of plants are very important components of various terrestrial ecosystems throughout the tropics. The tribe Psychotrieae is well established, but the same does not occur for their genera. The Amaracarpus Blume, Calycosia A. Gray, Dolianthus C. H. Wright, Hedstromia A. C. Sm., and Hydnophytum Jack genera, for example, were nested within Psychotria L. rendering the latter genus paraphyletic.1010 Razafimandimbison, S. G.; Taylor, C. M.; Wikström, N.; Pailler, T.; Khodabandeh, A.; Bremer, B.; Am. J. Bot. 2014, 101, 1102.

Before 2014, the relationships between among most members of tribes Psychotrieae and Palicoureae were still unknown partly, due to the poor or lack of sampling from some biodiversity hotspots. Schizocarpous fruits and bacterial nodules were used for recognizing authentic groups, but the evolution and taxonomic value of these characters have not been addressed based on a broadened sampling of the tribe.

In 2014, a robust phylogenetic study was done for establishing new generic circumscriptions between these tribes. Razafimandimbison et al.1010 Razafimandimbison, S. G.; Taylor, C. M.; Wikström, N.; Pailler, T.; Khodabandeh, A.; Bremer, B.; Am. J. Bot. 2014, 101, 1102. established that Psychotria includes all its allied genera, rendering the tribe Psychotrieae monogeneric. It was confirmed the paraphyly of Psychotria, because the genera Amaracarpus, Calycosia, Camptopus, represented by its type C. mannii (= P. camptopus), Dolianthus, Hydnophytum, Grumilea Gaertn., represented by the type G. nigra (= Psychotria nigra), Mapouria, and all the WIOR genera (Apomuria, Cremocarpon, Psathura, Pyragra, and Trigonopyren) are nested within a broadly defined Psychotria.1010 Razafimandimbison, S. G.; Taylor, C. M.; Wikström, N.; Pailler, T.; Khodabandeh, A.; Bremer, B.; Am. J. Bot. 2014, 101, 1102.

A great variety of species of plants belonging to the genus Psychotria have been phytochemically investigated and several compounds have been isolated and identified. Thus, the phytochemical approach, which involves a range of compounds, became a very useful tool to understand and establish the chemotaxonomy of Psychotria. In this context, different classes of organic compounds have been reported.1111 Nepokroeff, M.; Bremer, B.; Sytsma, K.; Syst. Bot. 1999, 24, 5.

Analysis of the chemical profile of some species like P. borucana contributed to the taxonomic rearrangement, which was grouped together with P. ipecac in Carapichea genus.1414 Bernhard, M.; Fasshuber, H.; Robien, W.; Brecker, L.; Greger, H.; Biochem. System. Ecol. 2011, 39, 232. The comparative study of 57 methanol extracts of Psychotria clearly showed a distinct chemical separation of P. borucana due to the bigger accumulation of alkaloids type dopamine-iridoid rather than alkaloids type tryptamine-iridoid, which is commonly found in other species. In this context stands out the borucoside alkaloid (1), which was first described in this species.1414 Bernhard, M.; Fasshuber, H.; Robien, W.; Brecker, L.; Greger, H.; Biochem. System. Ecol. 2011, 39, 232.

As an example, the species Psychotria acuminata was renamed to Palicourea acuminata (Benth.) and from methanol extract of its leaves and stem bark, were isolated several alkaloids type tryptamine-iridoids. Among those structures, lagamboside (2) is a novelty because represents an unusual pattern of N-glycosylation and a iridoid closely related to the unusual alkaloid vallesiachotamine (3).1515 Borhidi, A.; Acta Bot. Hung. 2011, 53, 241. Also, the co-occurrence of another rare alkaloid, the bahienoside B (4), comprising two iridoids structures, is of great interest and contributes to the chemotaxonomy of this species (Figure 2).1616 Berger, A.; Fasshuber, H.; Schinnerl, J.; Brecker, L.; Greger, H.; Phytochem. Lett. 2012, 5, 558.

Figure 2
The structures from Psychotria genus.

Besides the alkaloids, some other secondary metabolites also can be used as taxonomic markers. Vomifoliol (5), for example, is a megastigmane sesquiterpene that has been reported on Psychotria gitingensis from the Philippines. This compound has an α,β-unsaturated ketone that might be responsible for the observed orange spots in Dragendorff's test.1717 Tan, M. A.; Eusebio, J. A.; Alejandro, G. J. D.; Biochem. Syst. Ecol. 2012, 45, 20. It is well established that certain compounds can give false-positive alkaloid reactions with Dragendorff's spray reagent.1818 Habib, A. A.; J. Pharm. Sci. 1980, 69, 37.

Although P. gitingensis from Philipines did not present alkaloids, is highly recommended to verify the absence of alkaloids in species collected in other regions.

4. Traditional Uses of Psychotria Species

Plants from the genus Psychotria (leaves, roots, barks and rhizomes) are commonly used in traditional medicines for treating bronchial and gastrointestinal disorders such as cough, bronchitis, ulcer and stomachache. Also they are used for infections of the female reproductive system.99 Perry, L. M.; Medicinal Plants of East and Southeast Asia: Attributed Properties; The MIT Press: Cambridge, USA, 1980.,1919 Lajis, N. H.; Mahmud, Z.; Toia, R. F.; Planta Med. 1993, 59, 383.,2020 Formagio, A. S. N.; Volobuff, C. R. F.; Santiago, M.; Cardoso, C. A. L.; Vieira, M. C.; Pereira, Z. V.; Antioxidants 2014, 3, 745.P. poeppigiana is a native plant widely used in Latin America for the treatment of a variety of diseases, particularly gastrointestinal disorders, stomachaches and fever.2121 Gupta, M. P.; Solís, P. N.; Calderón, A. L.; Guionneau-Sinclair, F.; Correa, M.; Galdames, C.; Guerra, C.; Espinosa, A.; Alvenda, G. I.; Robles, G.; Ocampo, R.; J. Ethnopharmacol. 2005, 96, 389. In Panama, this plant is also used in traditional medicine for the treatment of dyspnea.2222 Joly, L. G.; Guerra, S.; Séptimo, R.; Solís, P. N.; Correa, M.; Gupta, M.; Levy, S.; Sandberg, F.; J. Ethnopharmacol. 1987, 20, 145.P. colorata is a plant commonly found in Amazon region of Brazil, which is used as painkiller for earache and abdominal pain by traditional rural communities.2323 Moura, L. T. S.; Maruo, V. M.; Rev. Cient. Eletr. Med. Vet. 2014, 23, 1. Available at http://faef.revista.inf.br/imagens_arquivos/arquivos_destaque/RlVaBqh06nvKOOw_2014-8-11-8-36-16.pdf, accessed in May 2016.
http://faef.revista.inf.br/imagens_arqui...

In Tamil Nadu (India) several tribes use the leaves, flowers and fruits from P. nudiflora Wt. & Arn. and P. nilgiriensis Deb. & Gan for rheumatism treatment.2424 Sutha, S.; Mohan, V. R.; Kumaresan, S.; Murugan, C.; Athiperumalsami, T.; Indian J. Tradit. Know. 2010, 9, 502. Other applications are anti-emetic and against snakebites in Central and South America countries.2525 Watt, J. M.; Breyer-Brandwijk, M. G.; The Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd ed.; E. & S. Livingstone: London, United Kingdom, 1962.,2626 Otero, R.; Núñez, V.; Barona, J.; Fonnegra, R.; Jiménez, S. L.; Osorio, R. G.; Saldarriaga, M.; Díaz, A.; J. Ethnopharmacol. 2000, 73, 233. In S. Tomé and Príncipe (Africa), P. subobliqua is used to treat toothaches and mouth inflammation.2727 Madureira, M. C.; Paiva, J. A.; Fernandes, A. F.; Gonçalves, A.; Catalão, C.; Fernandes, C.; Atalaia, J.; Vieira, J.; Gaspar, V.; Pontes, S.; Gino, S.; Costa, S.; Estudo Etnofarmacológico de Plantas Medicinais de S. Tomé e Príncipe; Ed. Ministério da Saúde STP/Fundação Calouste Gulbenkian: Lisboa, Portugal, 2008.,2828 Currais, A.; Chiruta, C.; Goujon-Svrzic, M.; Costa, G.; Santos, T.; Batista, M. T.; Paiva, J.; Madureira, M. C.; Maher, P.; J. Ethnopharmacol. 2014, 155, 830.

P. ipecacuanha (Brot.) Stokes is another species important on traditional medicine. It has an important history as emetic, expectorant, amebicide and also in the treatment of dysenteries.2929 Saint-Hilaire, A.; Plantas Usuais dos Brasileiro; Código Comunicação: Belo Horizonte, Brasil, 2009. Besides the properties already described, some Psychotria species are also used against microbial infections (malaria, amoebiasis, viral and venereal diseases), cardiovascular and mental disorders.3030 Khan, M. R.; Kihara, M.; Omoloso, A. D.; Fitoterapia 2001, 72, 818.,3131 Agripino, D. G.; Lima, M. E. L.; Silva, M. R.; Meda, C. I.; Bolzani, V. S.; Cordeiro, I.; Young, M. C. M.; Moreno, P. R. H.; Biota Neotrop. 2004, 4, 1.

In South America countries (Brazil, Peru and Ecuador) some species from the genus Psychotria are largely used by Amazon indigenous people as a component of the hallucinogenic drink "ayahuasca" which means "soul wine", used in religious ceremonies.55 McKenna, D. J.; Towers, G. H. N.; Abbot, F. J.; J. Ethnopharmacol. 1984, 10, 195.

6 Elisabetsky, E.; Castilhos, Z. C.; Int. J. Crude Drug Res. 1990, 28, 49.

7 Carlini, E. A.; Pharmacol., Biochem. Behav. 2003, 75, 501.
-88 Tupper, K. W.; Int. J. Drug Policy 2008, 19, 297. "Ayahuasca's" psychoactive effects are similar to LSD (lysergic acid diethylamide) and psilocybin.88 Tupper, K. W.; Int. J. Drug Policy 2008, 19, 297. The" ayahuasca" tea usually incorporates the leaves of P. viridis and bark of Banisteriopsis caapi, which are rich in N,N-dimethyltryptamine (a non-selective serotonin agonist, 5-HT) and β-carboline alkaloids, respectively.3232 Freedland, C. S.; Mansbach, R. S.; Drug Alcohol Depend. 1999, 54, 183.

33 Gambelunghe, C.; Aroni, K.; Rossi, R.; Moretti, L.; Bacci, M.; Biomed. Chromatogr. 2008, 22, 1056.
-3434 Pic-Taylor, A. P.; Motta, L. G.; Morais, J. A.; Melo Jr., W.; Santos, A. F. A.; Campos, L. A.; Mortari, M. R.; von Zuben, M. V.; Caldas, E. D.; Behav. Processes 2015, 118, 102. A qualitative empirical study made by Anja and Rolf3535 Anja, L-V.; Rolf, V.; J. Psychoact. Drugs 2014, 46, 63. explored the ritual use of "ayahuasca" in the treatment of addictions. The recently findings indicate that "ayahuasca" can serve as a therapeutic tool which catalyze neurological and psychological processes that support recovery from substance dependencies.

Some Psychotria species distributed in China are used in folk medicines for swelling and relieving muscles, activating collaterals and strengthening bones and muscles.3636 Lu, Q.; Wang, J.; Luo, J.; Wang, X.; Shan, S.; Kong, L.; Nat. Prod. Res. 2014, 28, 1659.P. henryi is one of these species that has been used in traditional Chinese medicine for invigorating spleen to eliminate dampness and for regulating qi-flowing to relieve pain.3737 Liu, Y.; Wang, J.-S.; Wang, X.-B.; Kong, L.-Y.; Fitoterapia 2013, 86, 178.

5. Chemical Constituents of Genus Psychotria

In recent years, the interest in plants from Psychotria genus has increased considerably, since it is an abundant source of several interesting natural products as alkaloids (major compounds), coumarins, flavonoids, terpenoids, tannins and cyclic peptides (Tables 1 and 2).

Table 1
Compounds identified from Psychotria speciesa aPsychotria species are organized in alphabetical order;
Table 2
Cyclic peptides identified from Psychotria species

5.1. Alkaloids

Several classes of alkaloids found on Psychotria genus is already described in the literature and some others are still under investigation (Figure 3).

Figure 3
The structures of alkaloids from Psychotria species.

A phytochemical study of P. umbellata Thonn. resulted in the isolation of psychollatine (umbellatine) (6) and other three psychollatine-derived monoterpene indole alkaloids: 3,4-dehydro-18,19-β-epoxy-psychollatine (7), N4-[1-((R)-2-hydroxypropyl)]-psychollatine (8), and N4-[1-((S)-2-hydroxypropyl)]-psychollatine (9).8686 Kerber, V. A.; Passos, C. S.; Verli, H.; Fett-Neto, A. G.; Quirion, J. P.; Henriques, A. T.; J. Nat. Prod. 2008, 71, 697.,8888 Kerber, V. A.; Passos, C. S.; Klein-Junior, L. C.; Quirion, J.-C.; Pannecoucke, X.; Salliot-Maire, I.; Henriques, A. T.; Tetrahedron Lett. 2014, 55, 4798. Two β-carboline alkaloids (harmane (10) and strictosidinic acid (11)) were isolated from the leaves and stems of P. barbiflora DC.9595 Valadão, A. L. C.; Abreu, C. M.; Dias, J. Z.; Arantes, P.; Verli, H.; Tanuri, A.; Aguiar, R. S.; Molecules 2015, 20, 11474. Ipecac alkaloids are secondary metabolites produced in the medicinal plant P. ipecacuanha and emetine (12) is the main alkaloid found in syrup of Ipecac.9696 Porto, D. D.; Matsuura, H. N.; Vargas, L. R. B.; Henriques, A. T.; Fett-Neto, A. G.; Nat. Prod. Commun. 2014, 9, 629. From the leaves and twigs of P. henryi, a new dimeric indole alkaloid, named psychohenin (13), was isolated.9797 Matsuura, H. N.; Fett-Neto, A. G.; Nat. Prod. Res. 2013, 27, 402. Studies describe the presence of a monoterpene indole alkaloid, brachycerine (14), in the leaves and inflorescences of P. brachyceras.4242 Kerber, V. A.; Gregianini, T. S.; Paranhos, J. T.; Schwambach, J.; Farias, F.; Fett, J. P.; Fett-Neto, A. G.; Zuanazzi, J. A. S.; Quirion, J. C.; Elizabetsky, E.; Henriques, A. T.; J. Nat. Prod. 2001, 64, 677.,9797 Matsuura, H. N.; Fett-Neto, A. G.; Nat. Prod. Res. 2013, 27, 402. From the leaves of P. leiocarpa Cham. & Schltdl. was obtained the major indole alkaloid N,β-D-glucopyranosyl vincosamide (15).6262 Henriques, A. T.; Lopes, S. O.; Paranhos, J. T.; Gregianini, T. S.; Von Poser, G. L.; Fett-Neto, A. G.; Schripsema, J.; Phytochemistry 2004, 65, 449.,9898 Iniyavan, M.; Sangeetha, D.; Saravanan, S.; Parimelazhagan, T.; Food Sci. Biotechnol. 2012, 21, 1421. Psychotriasine (16) was isolated from the leaves of P. calocarpa. This compound is the first example of a dimeric tryptamine-related alkaloid that contains a free N-methyltryptamine unit in the molecule.4444 Zhou, H.; He, H.-P.; Wang, Y.-H.; Hao, X.-J.; Helv. Chim. Acta 2010, 93, 1650. Two tryptamine-related alkaloids, psychotrimine (17) and psychopentamine (18), were isolated from the leaves of P. rostrata.7777 Takayama, H.; Mori, I.; Kitajima, M.; Aimi, N.; Lajis, N. H.; Org. Lett. 2004, 6, 2945. The crude extracts from the roots and branches of P. prunifolia led to the isolation of several alkaloids such as 10-hydroxyisodeppeaninol (19), 10-hydroxyantirhine N-oxide (20), 14-oxoprunifoleine (21) and strictosamide (22).7474 Kato, L.; Oliveira, C. M. A.; Faria, E. O.; Ribeiro, L. C.; Carvalho, B. G.; Silva, C. C.; Schuquel, I. T. A.; Santin, S. M. O.; Nakamura, C. V.; Britta, E. A.; Miranda, N.; Iglesias, A. H.; Delprete, P. G.; J. Braz. Chem. Soc. 2012, 23, 355. From the leaves of P. pilifera was isolated the compound psychotripine (23), a trimeric pyrroloindoline derivative with a hendecacyclic system bearing a hexahydro-1,3,5-triazine unit.7373 Li, X.-N.; Zhang, Y.; Cai, X.-H.; Feng, T.; Liu, Y.-P.; Li, Y.; Ren, J.; Zhu, H.-J.; Luo, X.-D.; Org. Lett. 2011, 13, 5896. The aerial parts of P. stachyoides led the isolation of two monoterpene indole alkaloids, stachyoside (24) and nor-methyl-23-oxo-correantoside (25).8282 Pimenta, A. T. A.; Braz-Filho, R.; Delprete, P. G.; Bezerra, E. S.; Silveira, E. R.; Lima, M. A. S.; Magn. Reson. Chem. 2010, 48, 734. From the leaves of P. suterella Mull. Arg. were obtained three indole monoterpene alkaloids, lyaloside (26), naucletine (27) and strictosamide (22).8484 van de Santos, L.; Fett-Neto, A. G.; Kerber, V. A.; Elisabetsky, E.; Quirion, J. C.; Henriques, A. T.; Biochem. Syst. Ecol. 2001, 29, 1185. From the leaves of P. nuda was isolated a major compound named strictosamide (22).7171 Farias, F. M.; Konrath, E. L.; Zuanazzi, J. A. S.; Henriques, A. T.; Biochem. Syst. Ecol. 2009, 36, 919.P. klugii yielded two new benzoquinolizidine alkaloids, klugine (28), and 7'-o-demethylisocephaeline (29), together with the previously known cephaeline (30), isocephaeline (31), and 7-o-methylipecoside (32).5858 Muhammad, I.; Dunbar, D. C.; Khan, S. I.; Tekwani, B. L.; Bedir, E.; Takamatsu, S.; Ferreira, D.; Walker, L. A.; J. Nat. Prod. 2003, 66, 962. Two bis(monoterpenoid) indole alkaloid glucosides, bahienoside A (33) and bahienoside B (4), together with the known compounds 5α-carboxystrictosidine (34), angustine (35), strictosamide (22), and vallesiachotamine (3), were isolated from the aerial parts of P. bahiensis.3939 Paul, J. H. A.; Maxwell, A. R.; Reynolds, W. F.; J. Nat. Prod. 2003, 66, 752. Dimethyltryptamine (36) was identified in the leaves of P. viridis, known for its ethnobotanical use as a hallucinogen.9191 Blackledge, R. D.; Taylor, C. M.; Microgram J. 2003, 1, 18.P. lyciiflora and P. oleoides, led to the isolation of several pyrrolidinoindoline alkaloids. Two dimers, the known meso-chimonanthine (37), Nb-desmethyl-meso-chimonanthine (38), and hodgkinsine (39), have been isolated from P. lyciiflora. Hodgkinsine (39), quadrigemine C (40), isopsychotridine B (41), psychotridine (42), quadrigemine I (43), oleoidine (44) and caledonine (45) were obtained from P. oleoides.6666 Jannic, V.; Gueritte, F.; Laprevote, O.; Serani, L.; Martin, M.-T.; Sevenet, T.; Potier, P.; J. Nat. Prod. 1999, 62, 838. From the aerial parts of P. glomerulata were isolated three quinoline alkaloids such as glomerulatine A (46), B (47) and C (48).5353 Solis, P. N.; Ravelo, A. G.; Palenzuela, J. A.; Gupta, M. P.; Gonzalez, A.; Phillipson, J. D.; Phytochemistry 1997, 44, 963. From extracts of the leaves and the roots of P. correae were obtained isodolichantoside (49) and the alkaloids correantoside (50), 10-hydroxycorreantoside (51), correantine A (52), B (53), and C (54), and 20-epi-correantine B (55).4848 Achenbach, H.; Lottes, M.; Waibel, R.; Karikas, G. A.; Correa, M. D. A.; Gupta, M. P.; Phytochemistry 1995, 38, 1537.P. forsteriana afforded three alkaloids (−)-calycanthine (56), iso-calycanthine (57), and meso-chimonanthine (38), a dimeric indole isomeric.5050 Adjibadé, Y.; Weniger, B.; Quirion, J. C.; Kuballa, B.; Cabalion, P.; Anton, R.; Phytochemistry 1991, 31, 317.

5.2. Terpenoids

The phytochemical study on P. yunnanensis allowed the isolation of four norisoprenoids (58-61) and one monoterpenic acid (62). From the aerial parts of this plant a new type of sesquiterpene derived from acorane, possessing rare spirobicyclic carbon skeleton, known as psycacoraone A, was identified (63).3636 Lu, Q.; Wang, J.; Luo, J.; Wang, X.; Shan, S.; Kong, L.; Nat. Prod. Res. 2014, 28, 1659.,9393 Lu, Q.; Wang, J.; Kong, L.; Biochem. Syst. Ecol. 2014, 52, 20.

From the leaves of P. cadigensis, an endemic species from Philippines, were isolated three nor-sesquiterpenes: vomifoliol (5), loliolide (61) and isololiolide (64). This was the first time that the phytochemical study of this species was described in the literature.4343 Tan, M. A.; Panghulan, G. F. M.; Uy, M. M.; Takayama, H.; Am. J. Essent. Oils Nat. Prod. 2014, 1, 18. In P. vellosiana Benth. was reported the presence of squalene (65), lupeol (66), a mixture of sitosterol (67) and stigmasterol (68) obtained from the aerial parts of the plant. Also according to the authors this is the first time that squalene was described on the genus.8989 Moreno, B. P.; Fiorucci, L. L. R.; Carmo, M. R. B.; Sarragiotto, M. H.; Baldoqui, D. C.; Biochem. Syst. Ecol. 2014, 56, 80. From the floral essential oil of P. eurycarpa Standl. were obtained some components such as linalool (69) and α-terpineol (70).4949 Setzer, W. N.; Noletto, J. A.; Haber, W. A.; J. Essent. Oil-Bear Plants 2006, 9, 28. The extract from leaves and roots of P. stachyoides Benth. provided β-sitosterol (71) and stigmasterol glucosides (72) (Figure 4).1212 Pimenta, A. T. A.; Uchôa, D. E. A.; Braz-Filho, R.; de Souza, E. B.; Silveira, E. R.; Lima, M. A. S.; J. Braz. Chem. Soc. 2011, 22, 2216.

Figure 4
The structures of terpenoids from Psychotria species.

5.3. Flavonoids

P. carthagenensis, P. leiocarpa, P. capillacea and P. deflexa were investigated in order to found total phenolics, flavonoids, condensed tannins and flavonols in their composition. Among these species, the highest flavonoid concentration was found in P. carthagenensis and P. capillacea extracts.2020 Formagio, A. S. N.; Volobuff, C. R. F.; Santiago, M.; Cardoso, C. A. L.; Vieira, M. C.; Pereira, Z. V.; Antioxidants 2014, 3, 745. Similar studies were done for P. hainanensis and P. nilgiriensis fruit and, both demonstrated highest total flavonoid content.5454 Li, H.-F.; Huang, J.; Liu, M.-S.; Zhang, X.-P.; Chin. J. Exp. Tradit. Med. Formulae 2011, 19, 125.,9898 Iniyavan, M.; Sangeetha, D.; Saravanan, S.; Parimelazhagan, T.; Food Sci. Biotechnol. 2012, 21, 1421. From leaves of P. spectabilis were isolated quercetin (73) and quercetrin (74).1313 Benevides, P. J. C.; Young, M. C. M.; Bolzani, V. S.; Pharm. Biol. 2004, 42, 565. Two flavonoid glycosides, from P. rubra, were identified as 6-hydroxy-luteolin-7-o-rutinoside (75) and luteolin-7-o-rutinoside (76).7979 Lu, H.-X.; Liu, L.-Y.; Li, D.-P.; Li, J.-Z.; Xu, L.-C.; Biochem. Syst. Ecol. 2014, 57, 133. Recently, the chemical study of P. serpens allowed the isolation of rutin (77), quercetin (73), tamarixetin-3-o-rutinoside (78) and kaempferol (79)8181 Lin, C.-H.; Wu, A.-Z.; Zhong, Y.; Wang, Y.-W.; Peng, G.-T.; Su, X.-J.; Liu, B.-X.; Deng, Y.; Zhu, C.-C.; Zhang, C.-X.; J. Cancer Res. Updates 2015, 3, 60. (Figure 5).

Figure 5
The structures of flavonoids from Psychotria species.

5.4. Coumarins

The phytochemical investigation of P. vellosiana aerial parts yielded the scopoletin (80).8989 Moreno, B. P.; Fiorucci, L. L. R.; Carmo, M. R. B.; Sarragiotto, M. H.; Baldoqui, D. C.; Biochem. Syst. Ecol. 2014, 56, 80. From leaves of P. spectabilis were isolated coumarin (81), umbelliferone (82), and psoralene (83) (Figure 6).1313 Benevides, P. J. C.; Young, M. C. M.; Bolzani, V. S.; Pharm. Biol. 2004, 42, 565.

Figure 6
The structures of coumarins from Psychotria species.

5.5. Tannins

A study realized for P. carthagenensis, P. leiocarpa, P. capillacea and P. deflexa showed not only high flavonoid concentration in the extracts, but also the presence of condensed tannins.2020 Formagio, A. S. N.; Volobuff, C. R. F.; Santiago, M.; Cardoso, C. A. L.; Vieira, M. C.; Pereira, Z. V.; Antioxidants 2014, 3, 745.,9898 Iniyavan, M.; Sangeetha, D.; Saravanan, S.; Parimelazhagan, T.; Food Sci. Biotechnol. 2012, 21, 1421. For P. reevesii Wall. was realized a screening based on color reactions, high performance liquid chromatography (HPLC) analytical and nuclear magnetic resonance (NMR) spectroscopy. The obtained results revealed the presence of condensed tannins.9999 Phan, M. G.; Ha, V. S.; Phan, T. S.; Vietnam J. Chem. 2007, 45, 628.

5.6. Cyclic peptides

Besides the presence of traditional secondary metabolites, another main chemical constituents are cyclic peptides, especially cyclotides. This peptide group is characterized by a peculiar cyclic structure with approximately 30 amino acids residues with cyclic cystine motif (CCK), conferring them a remarkable stability. All cyclotides sequences described in the literature from Psychotria species are presented on Table 2.100100 Mulvenna, J. P.; Wang, C.; Craik, D. J.; Nucleic Acids Res. 2006, 34, D192.,101101 Wang, C. K.; Kaas, Q.; Chiche, L.; Craik, D. J.; Nucleic Acids Res. 2008, 36, D206.

6. Pharmacological Properties of Psychotria Species

6.1. Neurodegenerative diseases

As previously demonstrated on section 4, plants from Psychotria genus commonly affect the central nervous system. Recently, several Psychotria alkaloids, mainly monoterpene indoles and β-carboline alkaloids have been reported for their inhibitory properties against acetylcholinesterase and monoamine oxidase proteins, which are enzymatic targets related with neurodegenerative diseases.6060 Passos, C. S.; Simões-Pires, C. A.; Nurisso, A.; Soldi, T. C.; Kato, L.; Oliveira, C. M. A.; Faria, E. O.; Marcourt, L.; Gottfried, C.; Carrupt, P. A.; Henriques, A. T.; Phytochemistry 2013, 86, 8.,102102 Hellinger, R.; Koehbach, J.; Puigpinoś, A.; Clark, R. J.; Tarrago, T.; Giralt, E.; Gruber, C. W.; J. Nat. Prod. 2015, 78, 1073. Alkaloidal fractions of Psychotria suterella and Psychotria laciniata as well as two monoterpene indole alkaloids isolated from these fractions were evaluated against monoamine oxidases (MAO-A and MAO-B) obtained from rat brain mitochondria.5959 Passos, C. S.; Soldi, T. C.; Abib, R. T.; Apel, M. A.; Simões-Pires, C.; Marcourt, L.; Gottfried, C.; Henriques, A. T.; J. Enzyme Inhib. Med. Chem. 2013, 28, 611. The monoterpene indole alkaloids lyaloside (26) and strictosamide (22) exhibited inhibitory effect on MAO-A (IC50 50.04 and 132.5 µg mL-1, respectively) and MAO-B (IC50 306.6 and 162.8 µg mL-1, respectively).5959 Passos, C. S.; Soldi, T. C.; Abib, R. T.; Apel, M. A.; Simões-Pires, C.; Marcourt, L.; Gottfried, C.; Henriques, A. T.; J. Enzyme Inhib. Med. Chem. 2013, 28, 611.,6060 Passos, C. S.; Simões-Pires, C. A.; Nurisso, A.; Soldi, T. C.; Kato, L.; Oliveira, C. M. A.; Faria, E. O.; Marcourt, L.; Gottfried, C.; Carrupt, P. A.; Henriques, A. T.; Phytochemistry 2013, 86, 8.,8484 van de Santos, L.; Fett-Neto, A. G.; Kerber, V. A.; Elisabetsky, E.; Quirion, J. C.; Henriques, A. T.; Biochem. Syst. Ecol. 2001, 29, 1185. These data confirm the previous study made by McKenna et al.55 McKenna, D. J.; Towers, G. H. N.; Abbot, F. J.; J. Ethnopharmacol. 1984, 10, 195. which also demonstrated inhibition of MAO by alkaloids compounds present in hallucinogenic "ayahuasca" drink.

Some other effects on the central nervous system involving acetylcholinesterase (AChE), butilcolinesterase (BChE) have also been reported for various other alkaloids of Psychotria sp. The β-carboline quaternary alkaloids prunifoleine (84) and 14-oxoprunifoleine (21) inhibited the enzymes AChE by a non-competitive mode of inhibition, although inhibited both BChE and MAO by a time-dependent mode of inhibition. In addition, the monoterpene indole alkaloids angustine (36), vallesiachotamine lactone (85) and vallesiachotamine (3) also inhibited BChE and MAO.5959 Passos, C. S.; Soldi, T. C.; Abib, R. T.; Apel, M. A.; Simões-Pires, C.; Marcourt, L.; Gottfried, C.; Henriques, A. T.; J. Enzyme Inhib. Med. Chem. 2013, 28, 611.,6060 Passos, C. S.; Simões-Pires, C. A.; Nurisso, A.; Soldi, T. C.; Kato, L.; Oliveira, C. M. A.; Faria, E. O.; Marcourt, L.; Gottfried, C.; Carrupt, P. A.; Henriques, A. T.; Phytochemistry 2013, 86, 8. The monoterpene indole alkaloid strictosidinic acid (11) isolated from the leaves of Psychotria myriantha Mull. Arg. reduced levels of serotonin (5-HT) and DOPA C, a metabolite of dopamine neurotransmitter from the MAO action in rat hippocampus inhibiting probably the precursor enzyme of the biosynthesis of 5-HT. A reduction of 83.5% in 5-HT levels was observed after intra-hippocampal injection (20 µg µL-1). In addition, decreased levels of DOPA C suggests that strictosidinic acid (11) have action on the dopaminergic system by inhibiting MAO, which was confirmed by enzymatic assay in rat brain mitochondria. After treatment by intraperitoneal route (10 mg kg-1), a reduction of 63.4% in 5-HT levels and 67.4% in DOPA C values were observed.6969 Farias, F. M.; Passos, C. S.; Arbo, M. D.; Barros, D. M.; Gottfried, C.; Steffen, V. M.; Henriques, A. T.; Fitoterapia 2012, 83, 1138.,7171 Farias, F. M.; Konrath, E. L.; Zuanazzi, J. A. S.; Henriques, A. T.; Biochem. Syst. Ecol. 2009, 36, 919. This monoterpene glycosylated indole alkaloid also showed peripheral analgesic and antipyretic activities on mice.7070 Simões-Pires, C. A.; Farias, F. M.; Marston, A.; Queiroz, E. F.; Chaves, C. G.; Henriques, A. T.; Hostettmann, K.; Nat. Prod. Commun. 2006, 1, 1101.,105105 Reanmongkol, W.; Sudhadhirasakul, S.; Kongsang, J.; Tanchong, M.; Kitti, J.; Pharm. Biol. 2000, 38, 68. Those findings suggest that species from genus Psychotria might be an interesting source for new MAO inhibitors.

The peptide cyclopsichotride A (Table 2), isolated from the extract of P. longipes inhibited the interaction of neurotensin radiolabeled with their membrane receptors on HT-29 cells (intestinal colon carcinoma) and stimulated the increase of calcium intracellular in two different cell lines not expressing neurotensin receptors. It suggests that this compound might be an antagonist of these types of receptors as well as also being able to act via other receptors.6565 Witherup, K. M.; Bogusky, M. J.; Anderson, P. M.; Ramjit, H.; Ransom, R. W.; Wood, T.; Sardana, M.; J. Nat. Prod. 1994, 57, 1619.

Studies made by Hellinger and co-workers104104 Koehbach, J.; Attah, A. F.; Berger, A.; Hellinger, R.; Kutchan, T. M.; Carpenter, E. J.; Rolf, M.; Sonibare, M. A.; Moody, J. O.; Wong, G. K.; Dessein, S.; Greger, H.; Gruber, C. W.; Biopolymers 2013, 100, 438. described the bioactivity-guided isolation of a cyclotide from P. solitudinum as an inhibitor of a serine-type protease, namely, the human prolyl oligopeptidase (POP). It yielded the isolated peptide psysol 2 (Table 2), which exhibited an IC50 of 25 µmol L-1. The enzyme POP plays an important role in memory and learning processes, and it is currently being considered as a therapeutic target for some psychiatric and neurodegenerative diseases, such as schizophrenia and Parkinson's disease.

6.2. Antioxidant and analgesic properties

The monoterpene indole alkaloids psychollatine (6) and brachycerine (14) isolated from P. umbellata and P. brachyceras, respectively, presented antioxidant and antimutagenic activity.4242 Kerber, V. A.; Gregianini, T. S.; Paranhos, J. T.; Schwambach, J.; Farias, F.; Fett, J. P.; Fett-Neto, A. G.; Zuanazzi, J. A. S.; Quirion, J. C.; Elizabetsky, E.; Henriques, A. T.; J. Nat. Prod. 2001, 64, 677.,106106 Fragoso, V.; Nascimento, N. C.; Moura, D. J.; Silva, A. C. R.; Richter, M. F.; Saffi, J.; Fett-Neto, A. G.; Toxicol. In Vitro 2008, 22, 559.,107107 Nascimento, N. C.; Fragoso, V.; Moura, D. J.; Silva, A. C. R.; Fett-Neto, A. G.; Saffi, J.; Environ. Mol. Mutagen. 2007, 48, 728. In the study made by Both et al.,8787 Both, F. L.; Farias, F. M.; Nicoláo, L. L.; Misturini, J.; Henriques, A. T.; Elisabetsky, E.; Rev. Bras. Pl. Med. 2002, 5, 41. it was described the analgesic properties of isodolichantoside (49) isolated from P. umbellata. These same analgesic properties have also been reported to alkaloid hodgkinsine (39) isolated from another Psychotria species, P. colorata which is in agreement with the previous study made by Amador et al.108108 Amador, T. A.; Verotta, L.; Nunes, D. S.; Elisabetsky, E.; Planta Med. 2000, 66, 770 and Elisabetsky et al.,109109 Elisabetsky, E.; Amador, T. A.; Albuquerque, R. R.; Nunes, D. S.; Carvalho, A. C. T.; J. Ethnopharmacol. 1995, 48, 77. which reported the alkaloid analgesic activity of leaves and flower extracts.

The alkaloid fraction from the ethanol extracts of flowers and leaves of P. colorata consisted primarily of a mixture of pyrrolidinoindoline alkaloids quadrigemine C (40), calycanthine (56), isocalycanthine (57) which showed analgesic activity by inhibiting the interaction of naloxone [H3] with proteins of the cell membrane and also inhibiting the activity of the enzyme adenylate cyclase in rat. Thus, this suggests an action in opiodergic system since alkaloids did not inhibit the interaction of GMP [H3]-pnp (guanylyl imidodiphosphate) with the proteins during the Tail-flick analgesic test.4646 Verotta, L.; Pilati, T.; Tatò, M.; Elisabetsky, E.; Amador, T. A.; Nunes, D. S.; J. Nat. Prod. 1998, 61, 392.,4747 Verotta, L.; Peterlongo, F.; Elisabetsky, E.; Amador, T. A.; Nunes, D. S.; J. Chromatogr. A 1999, 41, 165.,110110 Amador, T. A.; Elisabetsky, E.; Souza, D. O.; Neurochem. Res. 1996, 21, 97.

6.3. Anti-inflammatory activity

Ten Psychotria species were collected in the Brazilian Atlantic Forest (P. pubigera, P. ruelliifolia, P. suterela, P. stachyoides, P. capitata, P. glaziovii, P. leiocarpa, P. nuda, P. racemosa and P. vellosiana) in order to check if they could inhibit the production of nitric oxide (NO) in macrophages and if they have free-radical scavenging properties. From the evaluated extracts for in vitro anti-inflammatory activity, P. suterela, P. stachyoides and P. capitata were the most active in inhibiting macrophage NO production. Interestingly 5,6-dihydro-β-carboline alkaloids were found in all of the ten species evaluated, besides, indol alkaloids were also detected in P. nuda and P. suterela.111111 Moraes, T. M.; Araújo, M. H.; Bernardes, N. R.; Oliveira, D. B.; Lasunskaia, E. B.; Muzitano, M. F.; Cunha, M.; Planta Med. 2011, 77, 964.

6.4. Anti-protozoal activity

The alkaloids klugine (28), cephaelin (30) and isocephaeline (31) isolated from P. klugii presented in vitro leishmanicidal activity, being active against Leishmania donavani. In addition, the alkaloids 30 and 31 exhibited a potent antimalarial activity against W2 and D6 strains of Plasmodium falciparum.5858 Muhammad, I.; Dunbar, D. C.; Khan, S. I.; Tekwani, B. L.; Bedir, E.; Takamatsu, S.; Ferreira, D.; Walker, L. A.; J. Nat. Prod. 2003, 66, 962. The alkaloids obtained from P. prunifolia (Kunth) also showed leishmanicidal activity. These alkaloids, 14-oxoprunifoleine (21) and strictosamide (22) showed selective activity against Leishmania amazonensis, with IC50 values of 16.0 and 40.7 µg mL-1, respectively, although they showed no effect on epimastigotes forms of T. cruzi.7474 Kato, L.; Oliveira, C. M. A.; Faria, E. O.; Ribeiro, L. C.; Carvalho, B. G.; Silva, C. C.; Schuquel, I. T. A.; Santin, S. M. O.; Nakamura, C. V.; Britta, E. A.; Miranda, N.; Iglesias, A. H.; Delprete, P. G.; J. Braz. Chem. Soc. 2012, 23, 355.

The compound 1-​hydroxybenzoisochromanquinone (psychorubrin) (86) and benz[g]​isoquinoline-5,10-dione (87) isolated from the roots and stems of P. camponutans by a bioguided fractionation showed inhibition against resistant Plasmodium falciparum strains in in vitro assays.4545 Solis, P. N.; Lang'at, C.; Gupta, M. P.; Kirby, G. C.; Warhurst, D. C.; Phillipson, J. D.; Planta Med. 1995, 61, 62.

6.5. Antiviral activity

Ipecac alkaloids are secondary metabolites produced in the medicinal plant P. ipecacuanha. This species is known as a traditional herbal medicine, which was introduced to western medicine over 300 years ago and the syrup is commonly used as emetic for the treatment of patients who ingested poisons. Emetine (12) is one of the active compounds found in the syrup and the main alkaloid of Ipecac, which possesses a monoterpenoid-tetrahydroisoquinoline skeleton and is formed by condensation of dopamine and secologanin.5656 Moller, M.; Herzer, K.; Wenger, T.; Herr, I.; Wink, M.; Oncol. Rep. 2007, 18, 737. Ementine (12) was evaluated as an antiviral agent against human immunodeficiency virus (HIV). It inhibited HIV-1 replication by interfering with reverse transcriptase activity and the obtained results showed that in cellular models reduced about 80% of HIV-1 infection. It also blocked HIV-1 infection of RT M184V mutant in in vitro reactions with isolated HIV-1RT and intravirion.9595 Valadão, A. L. C.; Abreu, C. M.; Dias, J. Z.; Arantes, P.; Verli, H.; Tanuri, A.; Aguiar, R. S.; Molecules 2015, 20, 11474.

Six acetone subfractions of ethanolic extract from P. serpens significantly suppressed Herpes simplex virus type 1 replication on Vero cells. The viability of cells was not significantly decreased as well as deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and protein synthesis were unaffected showing that inhibitory mechanism of viral replication was not through cytotoxicity and/or blocking of Vero cells growth.112112 Kuo, Y. C.; Chien, C. C.; Tsai, W. J.; Ho, Y. H.; Antiviral Res. 2001, 51, 95.

6.6. Cytotoxic activity

Some other bioactive compounds from the polypyrrolidinoindoline alkaloid family have been described as cytotoxic agents. The compounds quadrigemine A (88), quadrigemine B (89), isopsychotridine C (90) and psychotridine (42) isolated from P. forsteriana leaves showed cytotoxic activity in rat hepatoma cell line (HTC strain) and were more potent than vincristine, an anti-tumor agent.5151 Roth, A.; Kuballa, B.; Bounthanh, C.; Caballion, P.; Sévenet, T.; Beck, J. P.; Anton, R.; Planta Med. 1986, 5, 450.,7676 Mahmud, Z.; Musa, M.; Ismail, N.; Lajis, N. H.; Int. J. Pharmacol. 1993, 31, 142. These same compounds also inhibited the aggregation of washed human platelets induced by adenosine diphosphate (ADP), collagen and thrombin.113113 Beretz, A.; Roth-Georger, A.; Corre, G.; Kuballa, B.; Anton, R.; Cazenave, J. P.; Planta Med. 1985, 4, 300. In addition, the compounds vatine (91), vatamine (92) and vatamidine (93) exhibited strong cytotoxic activity in rat hepatoma cells and in human leukemia cells.5252 Adjibadé, Y.; Saad, H.; Kuballa, B.; Beck, J. P.; Sévenet, T.; Cabalion, P.; Anton, R.; J. Ethnopharmacol. 1990, 29, 127.

The bioguided fractionation of P. serpens allowed the isolation of the triterpenoid ursolic acid (94), which showed cytotoxicity in leukemic cells P-388, L-1210 and A-549 human lung carcinoma. It also showed moderate cytotoxicity in human colon tumor cells (HCT-8) and breast cancer cells (MCF-7).8080 Lee, K.-H.; Lin, Y.-M.; Wu, T.-S.; Zhang, D.-C.; Yamagishi, T.; Hayashi, T.; Hall, I. H.; Chang, J.-J.; Wu, R.-Y.; Yang, T.-H.; Planta Med. 1988, 54, 308.

From Psychotria sp. Zhang et al.114114 Zhang, C.-X.; Zhang, D-M.; Chen, M.-F.; Guan, S.-Y.; Yao, J.-H.; He, X.-X.; Lei, L.-F.; Zhong, Y.; Wang, Z.-F.; Ye, W.-C.; Planta Med. 2013, 79, 978. isolated six new triterpenoid saponins called psychotrianosides A-F (95-100) and some other two compounds already known psychotrianoside G (101) and ardisianoside D (102). In vitro assays showed that the evaluated compounds reduced the viability of tumor cell lines like MDA-MB-231, MCF-7 and HepG2, and inhibited the growth of multi-drug resistant strains such MCF-7/ADM and HepG2/ADM. Among the evaluated saponins, the psychotrianoside C (97) showed the most potent cytotoxic effect and also induced cell death by apoptosis.

The alkaloid emetine (12) presented cytotoxic and apoptosis effects in leukemia cell lines via mitochondrial pathway.5656 Moller, M.; Herzer, K.; Wenger, T.; Herr, I.; Wink, M.; Oncol. Rep. 2007, 18, 737.,115115 Moller, M.; Wink, M.; Planta Med. 2007, 73, 1389. When tested with cisplatin (standard chemotherapeutic agent) it increased levels of apoptosis, inducing the expression of several proapoptotic genes and inhibiting expression of survival factors.5656 Moller, M.; Herzer, K.; Wenger, T.; Herr, I.; Wink, M.; Oncol. Rep. 2007, 18, 737.

The alkaloid psychotripine (23), a trimeric pyrroloindoline derivative with a hendecacyclic system bearing a hexahydro-1,3,5-triazine unit, was isolated from the leaves of P. pilifera. This compound was evaluated for cytotoxicity in five different tumor cell lines, HL-60 (leukemia), SMMC-7721 (liver cancer), A-549 (lung cancer), MCF-7 (breast cancer) and SW480 (colon cancer) although did not present any significant activity (IC50 > 40 mmol L-1).7373 Li, X.-N.; Zhang, Y.; Cai, X.-H.; Feng, T.; Liu, Y.-P.; Li, Y.; Ren, J.; Zhu, H.-J.; Luo, X.-D.; Org. Lett. 2011, 13, 5896.

The 1-hydroxybenzoisochromanquinone (psychorubrin) (86) isolated from P. rubra showed cytotoxic effect on tumor lineage KB. In addition, some other naphthoquinones derived from structural modifications exhibited cytotoxic activity higher than the natural product psychorubrin, thus demonstrating the importance of structure-activity study.7878 Hayashi, T.; Smith, F. T.; Lee, K.-H.; J. Med. Chem. 1987, 30, 2005.

From the species P. leptothyrsa, six cyclotides were isolated (Psyle A-F) (see Tables 1 and 2), however only the cyclotides psyle A, C and E showed a potent cytotoxic effect (IC50 = 0.64 > 10 µmol L-1) in breast cancer cell lines resistant (MCF-7/ADR) or not (MCF-7). It was demonstrated that the presence of cyclotides in MCF-7/ADR cell line significantly increased the cytotoxicity induced by doxorubicin (IC50 = 0.39-0.76 µmol L-1), revealing a chemosensitization effect of these compounds, as well as being promising against resistant breast cancer cell lines.6464 Gerlach, S. L.; Burman, R.; Bohlin, L.; Mondal, D.; Goransson, U.; J. Nat. Prod. 2010, 73, 1207.,116116 Gerlach, S. L.; Rathinakumar, R.; Chakravarty, G.; Goransson, U.; Wimley, W. C.; Darwin, S. P.; Mondal, D.; Biopolymers 2010, 94, 617.

6.7. Bactericidal and antifungal activity

The compound quadrigemine B (89) isolated from P. rostrata showed bactericidal activity against Escherichia coli and Staphylococcus aureus.7676 Mahmud, Z.; Musa, M.; Ismail, N.; Lajis, N. H.; Int. J. Pharmacol. 1993, 31, 142. From the leaves of the same species were isolated some other alkaloids like psychotrimine (17) and psychopentamine (18), which showed anti-bactericidal activity against resistant gram-positive bacteria Bacillus subtilis and S. aureus.7777 Takayama, H.; Mori, I.; Kitajima, M.; Aimi, N.; Lajis, N. H.; Org. Lett. 2004, 6, 2945.,117117 Schallenberger, M. A.; Newhouse, T.; Baran, P. S.; Romesberg, F. E.; J. Antibiot. 2010, 63, 685.

In a study made by Moraes et al.,111111 Moraes, T. M.; Araújo, M. H.; Bernardes, N. R.; Oliveira, D. B.; Lasunskaia, E. B.; Muzitano, M. F.; Cunha, M.; Planta Med. 2011, 77, 964. ten Psychotria species (P. pubigera, P. ruelliifolia, P. suterela, P. stachyoides, P. capitata, P. glaziovii, P. leiocarpa, P. nuda, P. racemosa and P. vellosiana) were evaluated for antimycobacterial activity, in an attempt to find new antituberculosis agents. From the evaluated extracts the species P. pubigera, P. ruelliifolia and P. stachyoides were the most active against Mycobacterium.

From P. spectabilis were isolated two diterpenes, solidagenone (103) and deoxysolidagenone (104), three coumarins, coumarin (81), umbelliferone (82) and psoralene (83), which exhibited antifungal activity against the filamentous fungi Cladosporium cladosporioides (Fresen) de Vries and Cladosporium sphaerospermum Penzig. Further evaluations of compounds 103 and 83 showed selective cytotoxicity against Rad 52Y mutant yeast strain of Saccharomyces cerevisiae.1313 Benevides, P. J. C.; Young, M. C. M.; Bolzani, V. S.; Pharm. Biol. 2004, 42, 565.

6.8. Other activities

The indole pyrrolidine alkaloids like psycholeine (105) and quadrigemine C (40) isolated from P. oleoides were subjected to the interaction study with radiolabeled somatostatin ([125 I] N-Tyr-SRIF), inhibition of the enzyme adenylate cyclase and somatostatin secretion of growth hormone (GH) by the rat pituitary cells. Psycholeine (105) presented antagonistic properties at the SRIF receptor with an IC50 of 10-5 mol L-1.7272 Guéritte-Voegelein, F.; Sévenet, T.; Pusset, J.; Adeline, M. T.; Gillet, B.; Beloeil, J. C.; Guénard, D.; Potier, P.; J. Nat. Prod. 1992, 55, 923.,118118 Rasolonjanahary, R.; Sévenet, T.; Voegelein, F. G.; Kordon, C.; Eur. J. Pharmacol. 1995, 285, 19.

7. Ecological Approach of Psychotria Species

The production of secondary metabolites may also help the plants to develop and grow in the environment. The monoterpene indole alkaloid brachycerine (14), an antioxidant glucosidic indole alkaloid, is involved in the defense of P. brachyceras Muell. Arg. against the osmotic/oxidative stress, contributing to the detoxification of hydroxyl radicals and superoxide anions. It was demonstrated that the agents responsible for inducing osmotic stress agents such as sodium chloride, sorbitol and polyethylene glycol lead to the alkaloid accumulation in leaves. Some other agents responsible for inducing oxidative stress such as exposure to aluminum, silver and abscisic acid also increased the amount of brachycerine (14). Nascimento et al.119119 Nascimento, N. C.; Menguer, P. K.; Henriques, A. T.; Fett-Neto, A. G.; Plant Physiol. Biochem. 2013, 73, 33. described that brachycerine in not herbivore deterrent, but is involved in defense by modulating oxidative stress.

The major indole alkaloid N,β-D-glucopyranosyl vincosamide (15) from leaves of P. leiocarpa Cham. & Schltdl. showed broad antioxidant activity and may act against oxidative stress generated upon wounding, UV exposure and perhaps other environmental stresses.9797 Matsuura, H. N.; Fett-Neto, A. G.; Nat. Prod. Res. 2013, 27, 402.

The study made by Matsuura and Fett-Neto9797 Matsuura, H. N.; Fett-Neto, A. G.; Nat. Prod. Res. 2013, 27, 402. showed the antioxidant effect of GPV (N,β-D-glucopyranosyl vincosamide) (15) when evaluated in vitro tests against singlet oxygen, superoxide and hydroxyl radicals and in situ tests against hydrogen peroxide. It was demonstrated that this alkaloid protects the plant P. leiocarpa indirectly against oxidative stress generated in injury, exposure to UV rays and other environmental damage, although not directly against herbivory.9696 Porto, D. D.; Matsuura, H. N.; Vargas, L. R. B.; Henriques, A. T.; Fett-Neto, A. G.; Nat. Prod. Commun. 2014, 9, 629.

Psychotria plants are rich in secondary metabolites that could be toxic against Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) for maize protection. The study made by Tavares et al.120120 Tavares, W. S.; Grazziotti, G. H.; Souza Jr., A. A.; Sousa Freitas, S.; Consolaro, H. N.; Ribeiro, P. E.; Zanuncio, J. C.; J. Food Prot. 2013, 76, 1892. demonstrated that extracts (leaves or stems) from P. hoffmannseggiana, P. capitata and P. goyazensis were significantly toxic to these type of insects involving the following parameters such as hatching rate, weight, length, repellence and mortality.

Figure 7
The structures from Psychotria species.

The extract from the leaves of P. microphylla showed to be very toxic to the young forms of Clarias gariepinus, important species of catfish from Africa. The toxicity of the extract was time and dose-dependent. This extract may be useful in aquaculture to eradicate predators and competitors of wild fishpond in farmed ponds or stocking hatchery fish species commercially cultivated.121121 Orji, O. U.; Ibiam, U. A.; Aja, P. M.; Int. J. Biol. Sci. 2014, 3, 038.

Species such as P. gabriellae and P. douarrei presented the ability to accumulate high amounts of nickel in their sprouts. Metabolites were identified in complexes with Ni including Ni-malonate from P. douarrei and the levels for some metabolites were found to correlate with the leaf Ni concentration.122122 Merlot, S.; Hannibal, L.; Martins, S.; Martinelli, L.; Amir, H.; Lebrun, M.; Thomine, S.; J. Exp. Bot. 2014, 65, 1551.,123123 Callahan, D. L.; Roessner, U.; Dumontet, V.; Livera, A. M.; Doronila, A.; Baker, A. J. M.; Kolev, S. D.; Phytochemistry 2012, 81, 80. Studies conducted by Grison et al.124124 Grison, C.; Escande, V.; Petit, E.; Garoux, L.; Boulangerd, C.; Grison, C.; RSC Adv. 2013, 3, 22340. demonstrated the use of biomass obtained from P. douarrei enriched by nickel a catalyst type Lewis acid in organic synthesis as an alternative source of nickel used in the synthesis of antifungal compound monastrol, thus showing its potential to be used in Green Chemistry.

8. Conclusions

As demonstrated in our methods an increasing number of publications revealed a significant interest in Psycothria genus in recently years, due to their traditional uses and pharmacological activities. This review presents the main traditional uses as long as pharmacological properties, phytochemistry, chemotaxonomy and ecological approach.

The genus Psychotria presents a complex taxonomy and its phytochemical approach became a very useful tool to understand and establish the chemotaxonomy. Several classes of natural products are described for this genus, although, this study highlights the importance of some alkaloids and cyclic peptides, which are involved on central nervous system and neurodegenerative diseases.

  • FAPESP has sponsored the publication of this article.

Acknowledgments

The authors are also grateful to CEPID-FAPESP grant No. 2010/52327-5 and 2013/07600-3, SISBIOTA-CNPq-FAPESP grant No. 2010/52327-5, FAPESP grant No. 2015/09533-7, CNPq and CAPES for scholarships and financial support.

References

  • 1
    http://www.who.int/medicines/areas/traditional/en, accessed in May 2016.
    » http://www.who.int/medicines/areas/traditional/en
  • 2
    Cragg, G. M.; Newman, D. J.; Biochim. Biophys. Acta 2013, 1830, 3670.
  • 3
    Hamilton, C. W.; Ann. Mo. Bot. Gard. 1989, 76, 67.
  • 4
    Taylor, C. M.; Opera Bot. Belg. 1996, 7, 261.
  • 5
    McKenna, D. J.; Towers, G. H. N.; Abbot, F. J.; J. Ethnopharmacol. 1984, 10, 195.
  • 6
    Elisabetsky, E.; Castilhos, Z. C.; Int. J. Crude Drug Res. 1990, 28, 49.
  • 7
    Carlini, E. A.; Pharmacol., Biochem. Behav. 2003, 75, 501.
  • 8
    Tupper, K. W.; Int. J. Drug Policy 2008, 19, 297.
  • 9
    Perry, L. M.; Medicinal Plants of East and Southeast Asia: Attributed Properties; The MIT Press: Cambridge, USA, 1980.
  • 10
    Razafimandimbison, S. G.; Taylor, C. M.; Wikström, N.; Pailler, T.; Khodabandeh, A.; Bremer, B.; Am. J. Bot 2014, 101, 1102.
  • 11
    Nepokroeff, M.; Bremer, B.; Sytsma, K.; Syst. Bot 1999, 24, 5.
  • 12
    Pimenta, A. T. A.; Uchôa, D. E. A.; Braz-Filho, R.; de Souza, E. B.; Silveira, E. R.; Lima, M. A. S.; J. Braz. Chem. Soc 2011, 22, 2216.
  • 13
    Benevides, P. J. C.; Young, M. C. M.; Bolzani, V. S.; Pharm. Biol. 2004, 42, 565.
  • 14
    Bernhard, M.; Fasshuber, H.; Robien, W.; Brecker, L.; Greger, H.; Biochem. System. Ecol. 2011, 39, 232.
  • 15
    Borhidi, A.; Acta Bot. Hung 2011, 53, 241.
  • 16
    Berger, A.; Fasshuber, H.; Schinnerl, J.; Brecker, L.; Greger, H.; Phytochem. Lett. 2012, 5, 558.
  • 17
    Tan, M. A.; Eusebio, J. A.; Alejandro, G. J. D.; Biochem. Syst. Ecol. 2012, 45, 20.
  • 18
    Habib, A. A.; J. Pharm. Sci 1980, 69, 37.
  • 19
    Lajis, N. H.; Mahmud, Z.; Toia, R. F.; Planta Med 1993, 59, 383.
  • 20
    Formagio, A. S. N.; Volobuff, C. R. F.; Santiago, M.; Cardoso, C. A. L.; Vieira, M. C.; Pereira, Z. V.; Antioxidants 2014, 3, 745.
  • 21
    Gupta, M. P.; Solís, P. N.; Calderón, A. L.; Guionneau-Sinclair, F.; Correa, M.; Galdames, C.; Guerra, C.; Espinosa, A.; Alvenda, G. I.; Robles, G.; Ocampo, R.; J. Ethnopharmacol. 2005, 96, 389.
  • 22
    Joly, L. G.; Guerra, S.; Séptimo, R.; Solís, P. N.; Correa, M.; Gupta, M.; Levy, S.; Sandberg, F.; J. Ethnopharmacol. 1987, 20, 145.
  • 23
    Moura, L. T. S.; Maruo, V. M.; Rev. Cient. Eletr. Med. Vet. 2014, 23, 1. Available at http://faef.revista.inf.br/imagens_arquivos/arquivos_destaque/RlVaBqh06nvKOOw_2014-8-11-8-36-16.pdf, accessed in May 2016.
    » http://faef.revista.inf.br/imagens_arquivos/arquivos_destaque/RlVaBqh06nvKOOw_2014-8-11-8-36-16.pdf
  • 24
    Sutha, S.; Mohan, V. R.; Kumaresan, S.; Murugan, C.; Athiperumalsami, T.; Indian J. Tradit. Know 2010, 9, 502.
  • 25
    Watt, J. M.; Breyer-Brandwijk, M. G.; The Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd ed.; E. & S. Livingstone: London, United Kingdom, 1962.
  • 26
    Otero, R.; Núñez, V.; Barona, J.; Fonnegra, R.; Jiménez, S. L.; Osorio, R. G.; Saldarriaga, M.; Díaz, A.; J. Ethnopharmacol 2000, 73, 233.
  • 27
    Madureira, M. C.; Paiva, J. A.; Fernandes, A. F.; Gonçalves, A.; Catalão, C.; Fernandes, C.; Atalaia, J.; Vieira, J.; Gaspar, V.; Pontes, S.; Gino, S.; Costa, S.; Estudo Etnofarmacológico de Plantas Medicinais de S. Tomé e Príncipe; Ed. Ministério da Saúde STP/Fundação Calouste Gulbenkian: Lisboa, Portugal, 2008.
  • 28
    Currais, A.; Chiruta, C.; Goujon-Svrzic, M.; Costa, G.; Santos, T.; Batista, M. T.; Paiva, J.; Madureira, M. C.; Maher, P.; J. Ethnopharmacol 2014, 155, 830.
  • 29
    Saint-Hilaire, A.; Plantas Usuais dos Brasileiro; Código Comunicação: Belo Horizonte, Brasil, 2009.
  • 30
    Khan, M. R.; Kihara, M.; Omoloso, A. D.; Fitoterapia 2001, 72, 818.
  • 31
    Agripino, D. G.; Lima, M. E. L.; Silva, M. R.; Meda, C. I.; Bolzani, V. S.; Cordeiro, I.; Young, M. C. M.; Moreno, P. R. H.; Biota Neotrop. 2004, 4, 1.
  • 32
    Freedland, C. S.; Mansbach, R. S.; Drug Alcohol Depend. 1999, 54, 183.
  • 33
    Gambelunghe, C.; Aroni, K.; Rossi, R.; Moretti, L.; Bacci, M.; Biomed. Chromatogr. 2008, 22, 1056.
  • 34
    Pic-Taylor, A. P.; Motta, L. G.; Morais, J. A.; Melo Jr., W.; Santos, A. F. A.; Campos, L. A.; Mortari, M. R.; von Zuben, M. V.; Caldas, E. D.; Behav. Processes 2015, 118, 102.
  • 35
    Anja, L-V.; Rolf, V.; J. Psychoact. Drugs 2014, 46, 63.
  • 36
    Lu, Q.; Wang, J.; Luo, J.; Wang, X.; Shan, S.; Kong, L.; Nat. Prod. Res. 2014, 28, 1659.
  • 37
    Liu, Y.; Wang, J.-S.; Wang, X.-B.; Kong, L.-Y.; Fitoterapia 2013, 86, 178.
  • 38
    Dan, S.; Dan, S. S.; Fitoterapia 1986, 57, 445.
  • 39
    Paul, J. H. A.; Maxwell, A. R.; Reynolds, W. F.; J. Nat. Prod. 2003, 66, 752.
  • 40
    Oliveira, A. M.; Lemos, R. P. L.; Conserva, L. M.; Biochem. Syst. Ecol 2013, 50, 339.
  • 41
    Hart, N. K.; Johns, S. R.; Lamberton, J. A.; Summons, R. E.; Aust. J. Chem. 1974, 27, 639.
  • 42
    Kerber, V. A.; Gregianini, T. S.; Paranhos, J. T.; Schwambach, J.; Farias, F.; Fett, J. P.; Fett-Neto, A. G.; Zuanazzi, J. A. S.; Quirion, J. C.; Elizabetsky, E.; Henriques, A. T.; J. Nat. Prod. 2001, 64, 677.
  • 43
    Tan, M. A.; Panghulan, G. F. M.; Uy, M. M.; Takayama, H.; Am. J. Essent. Oils Nat. Prod. 2014, 1, 18.
  • 44
    Zhou, H.; He, H.-P.; Wang, Y.-H.; Hao, X.-J.; Helv. Chim. Acta 2010, 93, 1650.
  • 45
    Solis, P. N.; Lang'at, C.; Gupta, M. P.; Kirby, G. C.; Warhurst, D. C.; Phillipson, J. D.; Planta Med. 1995, 61, 62.
  • 46
    Verotta, L.; Pilati, T.; Tatò, M.; Elisabetsky, E.; Amador, T. A.; Nunes, D. S.; J. Nat. Prod. 1998, 61, 392.
  • 47
    Verotta, L.; Peterlongo, F.; Elisabetsky, E.; Amador, T. A.; Nunes, D. S.; J. Chromatogr. A 1999, 41, 165.
  • 48
    Achenbach, H.; Lottes, M.; Waibel, R.; Karikas, G. A.; Correa, M. D. A.; Gupta, M. P.; Phytochemistry 1995, 38, 1537.
  • 49
    Setzer, W. N.; Noletto, J. A.; Haber, W. A.; J. Essent. Oil-Bear Plants 2006, 9, 28.
  • 50
    Adjibadé, Y.; Weniger, B.; Quirion, J. C.; Kuballa, B.; Cabalion, P.; Anton, R.; Phytochemistry 1991, 31, 317.
  • 51
    Roth, A.; Kuballa, B.; Bounthanh, C.; Caballion, P.; Sévenet, T.; Beck, J. P.; Anton, R.; Planta Med. 1986, 5, 450.
  • 52
    Adjibadé, Y.; Saad, H.; Kuballa, B.; Beck, J. P.; Sévenet, T.; Cabalion, P.; Anton, R.; J. Ethnopharmacol 1990, 29, 127.
  • 53
    Solis, P. N.; Ravelo, A. G.; Palenzuela, J. A.; Gupta, M. P.; Gonzalez, A.; Phillipson, J. D.; Phytochemistry 1997, 44, 963.
  • 54
    Li, H.-F.; Huang, J.; Liu, M.-S.; Zhang, X.-P.; Chin. J. Exp. Tradit. Med. Formulae 2011, 19, 125.
  • 55
    Liu, Y.; Wang, J.-S.; Wang, X.-B.; Kong, L.-Y.; J. Asian Nat. Prod. Res. 2014, 16, 29.
  • 56
    Moller, M.; Herzer, K.; Wenger, T.; Herr, I.; Wink, M.; Oncol. Rep 2007, 18, 737.
  • 57
    Nomura, T.; Quesada, A. L.; Kutchan, T. M.; J. Biol. Chem. 2008, 283, 34650.
  • 58
    Muhammad, I.; Dunbar, D. C.; Khan, S. I.; Tekwani, B. L.; Bedir, E.; Takamatsu, S.; Ferreira, D.; Walker, L. A.; J. Nat. Prod. 2003, 66, 962.
  • 59
    Passos, C. S.; Soldi, T. C.; Abib, R. T.; Apel, M. A.; Simões-Pires, C.; Marcourt, L.; Gottfried, C.; Henriques, A. T.; J. Enzyme Inhib. Med. Chem. 2013, 28, 611.
  • 60
    Passos, C. S.; Simões-Pires, C. A.; Nurisso, A.; Soldi, T. C.; Kato, L.; Oliveira, C. M. A.; Faria, E. O.; Marcourt, L.; Gottfried, C.; Carrupt, P. A.; Henriques, A. T.; Phytochemistry 2013, 86, 8.
  • 61
    Lopes, S. O.; Poser, G. L. V.; Kerber, V. A.; Farias, F. M.; Konrath, E. L.; Moreno, P.; Sobral, M. E.; Zuanazzi, J. A. S.; Henriques, A. T.; Biochem. Syst. Ecol 2004, 32, 1187.
  • 62
    Henriques, A. T.; Lopes, S. O.; Paranhos, J. T.; Gregianini, T. S.; Von Poser, G. L.; Fett-Neto, A. G.; Schripsema, J.; Phytochemistry 2004, 65, 449.
  • 63
    Andrade, J. M. M.; Biegelmeyer, R.; Xavier, C. A. G.; Bordignon, S. A. L.; Moreno, P. R. H.; Zuanazzi, J. A. S.; Henriques, A. T.; Apel, M. A.; Chem. Nat. Compd 2010, 46, 649.
  • 64
    Gerlach, S. L.; Burman, R.; Bohlin, L.; Mondal, D.; Goransson, U.; J. Nat. Prod. 2010, 73, 1207.
  • 65
    Witherup, K. M.; Bogusky, M. J.; Anderson, P. M.; Ramjit, H.; Ransom, R. W.; Wood, T.; Sardana, M.; J. Nat. Prod 1994, 57, 1619.
  • 66
    Jannic, V.; Gueritte, F.; Laprevote, O.; Serani, L.; Martin, M.-T.; Sevenet, T.; Potier, P.; J. Nat. Prod 1999, 62, 838.
  • 67
    Hadi, S.; Asnawati, D.; Ersalena, V.F.; Azwari, A.; Rahmawati, K. P.; J. Pure Appl. Chem. Res 2014, 3, 108.
  • 68
    Gonzalez, J.; Dieck, T.; Rev. Latinoam. Quim. 1996, 24, 7.
  • 69
    Farias, F. M.; Passos, C. S.; Arbo, M. D.; Barros, D. M.; Gottfried, C.; Steffen, V. M.; Henriques, A. T.; Fitoterapia 2012, 83, 1138.
  • 70
    Simões-Pires, C. A.; Farias, F. M.; Marston, A.; Queiroz, E. F.; Chaves, C. G.; Henriques, A. T.; Hostettmann, K.; Nat. Prod. Commun. 2006, 1, 1101.
  • 71
    Farias, F. M.; Konrath, E. L.; Zuanazzi, J. A. S.; Henriques, A. T.; Biochem. Syst. Ecol. 2009, 36, 919.
  • 72
    Guéritte-Voegelein, F.; Sévenet, T.; Pusset, J.; Adeline, M. T.; Gillet, B.; Beloeil, J. C.; Guénard, D.; Potier, P.; J. Nat. Prod. 1992, 55, 923.
  • 73
    Li, X.-N.; Zhang, Y.; Cai, X.-H.; Feng, T.; Liu, Y.-P.; Li, Y.; Ren, J.; Zhu, H.-J.; Luo, X.-D.; Org. Lett 2011, 13, 5896.
  • 74
    Kato, L.; Oliveira, C. M. A.; Faria, E. O.; Ribeiro, L. C.; Carvalho, B. G.; Silva, C. C.; Schuquel, I. T. A.; Santin, S. M. O.; Nakamura, C. V.; Britta, E. A.; Miranda, N.; Iglesias, A. H.; Delprete, P. G.; J. Braz. Chem. Soc 2012, 23, 355.
  • 75
    Faria, E. O.; Kato, L.; Oliveira, C. M. A.; Carvalho, B. G.; Silva, C. C.; Sales, L. S.; Schuquel, I. T. A.; Silveira-Lacerda, E. P.; Delprete, P. G.; Phytochem. Lett. 2010, 3, 113.
  • 76
    Mahmud, Z.; Musa, M.; Ismail, N.; Lajis, N. H.; Int. J. Pharmacol 1993, 31, 142.
  • 77
    Takayama, H.; Mori, I.; Kitajima, M.; Aimi, N.; Lajis, N. H.; Org. Lett. 2004, 6, 2945.
  • 78
    Hayashi, T.; Smith, F. T.; Lee, K.-H.; J. Med. Chem 1987, 30, 2005.
  • 79
    Lu, H.-X.; Liu, L.-Y.; Li, D.-P.; Li, J.-Z.; Xu, L.-C.; Biochem. Syst. Ecol. 2014, 57, 133.
  • 80
    Lee, K.-H.; Lin, Y.-M.; Wu, T.-S.; Zhang, D.-C.; Yamagishi, T.; Hayashi, T.; Hall, I. H.; Chang, J.-J.; Wu, R.-Y.; Yang, T.-H.; Planta Med 1988, 54, 308.
  • 81
    Lin, C.-H.; Wu, A.-Z.; Zhong, Y.; Wang, Y.-W.; Peng, G.-T.; Su, X.-J.; Liu, B.-X.; Deng, Y.; Zhu, C.-C.; Zhang, C.-X.; J. Cancer Res. Updates 2015, 3, 60.
  • 82
    Pimenta, A. T. A.; Braz-Filho, R.; Delprete, P. G.; Bezerra, E. S.; Silveira, E. R.; Lima, M. A. S.; Magn. Reson. Chem. 2010, 48, 734.
  • 83
    Murillo, R.; Castro, V.; Ing. Cienc. Quim. 1998, 18, 61.
  • 84
    van de Santos, L.; Fett-Neto, A. G.; Kerber, V. A.; Elisabetsky, E.; Quirion, J. C.; Henriques, A. T.; Biochem. Syst. Ecol. 2001, 29, 1185.
  • 85
    Gruber, C. W.; Elliott, A. G.; Ireland, D. C.; Delprete, P. G.; Dessein, S.; Göransson, U.; Trabi, M.; Wang, C. K.; Kinghorn, A. B.; Robbrecht, E.; Craik, D. J.; Plant Cell 2008, 20, 2471.
  • 86
    Kerber, V. A.; Passos, C. S.; Verli, H.; Fett-Neto, A. G.; Quirion, J. P.; Henriques, A. T.; J. Nat. Prod. 2008, 71, 697.
  • 87
    Both, F. L.; Farias, F. M.; Nicoláo, L. L.; Misturini, J.; Henriques, A. T.; Elisabetsky, E.; Rev. Bras. Pl. Med. 2002, 5, 41.
  • 88
    Kerber, V. A.; Passos, C. S.; Klein-Junior, L. C.; Quirion, J.-C.; Pannecoucke, X.; Salliot-Maire, I.; Henriques, A. T.; Tetrahedron Lett 2014, 55, 4798.
  • 89
    Moreno, B. P.; Fiorucci, L. L. R.; Carmo, M. R. B.; Sarragiotto, M. H.; Baldoqui, D. C.; Biochem. Syst. Ecol 2014, 56, 80.
  • 90
    Callaway, J. C.; Brito, G. S.; Neves, E. S.; J. Psychoact. Drugs 2005, 37, 145.
  • 91
    Blackledge, R. D.; Taylor, C. M.; Microgram J 2003, 1, 18.
  • 92
    Reyna, V. P.; Torpoco, C. V.; Bol. Soc. Quim. Peru 1994, 60, 21.
  • 93
    Lu, Q.; Wang, J.; Kong, L.; Biochem. Syst. Ecol 2014, 52, 20.
  • 94
    http://www.theplantlist.org/tpl1.1/search?q=Psychotria accessed in May 2016.
    » http://www.theplantlist.org/tpl1.1/search?q=Psychotria
  • 95
    Valadão, A. L. C.; Abreu, C. M.; Dias, J. Z.; Arantes, P.; Verli, H.; Tanuri, A.; Aguiar, R. S.; Molecules 2015, 20, 11474.
  • 96
    Porto, D. D.; Matsuura, H. N.; Vargas, L. R. B.; Henriques, A. T.; Fett-Neto, A. G.; Nat. Prod. Commun. 2014, 9, 629.
  • 97
    Matsuura, H. N.; Fett-Neto, A. G.; Nat. Prod. Res. 2013, 27, 402.
  • 98
    Iniyavan, M.; Sangeetha, D.; Saravanan, S.; Parimelazhagan, T.; Food Sci. Biotechnol 2012, 21, 1421.
  • 99
    Phan, M. G.; Ha, V. S.; Phan, T. S.; Vietnam J. Chem. 2007, 45, 628.
  • 100
    Mulvenna, J. P.; Wang, C.; Craik, D. J.; Nucleic Acids Res 2006, 34, D192.
  • 101
    Wang, C. K.; Kaas, Q.; Chiche, L.; Craik, D. J.; Nucleic Acids Res. 2008, 36, D206.
  • 102
    Hellinger, R.; Koehbach, J.; Puigpinoś, A.; Clark, R. J.; Tarrago, T.; Giralt, E.; Gruber, C. W.; J. Nat. Prod 2015, 78, 1073.
  • 103
    Sacconnay, L.; Ryckewaert, L.; Passos, C. S.; Guerra, M. C.; Kato, L.; Oliveira, C. M. A. O.; Henriques, A.; Carrupt, P.-A.; Simões-Pires, C.; Nurisso, A.; Planta Med 2015, 81, 517.
  • 104
    Koehbach, J.; Attah, A. F.; Berger, A.; Hellinger, R.; Kutchan, T. M.; Carpenter, E. J.; Rolf, M.; Sonibare, M. A.; Moody, J. O.; Wong, G. K.; Dessein, S.; Greger, H.; Gruber, C. W.; Biopolymers 2013, 100, 438.
  • 105
    Reanmongkol, W.; Sudhadhirasakul, S.; Kongsang, J.; Tanchong, M.; Kitti, J.; Pharm. Biol. 2000, 38, 68.
  • 106
    Fragoso, V.; Nascimento, N. C.; Moura, D. J.; Silva, A. C. R.; Richter, M. F.; Saffi, J.; Fett-Neto, A. G.; Toxicol. In Vitro 2008, 22, 559.
  • 107
    Nascimento, N. C.; Fragoso, V.; Moura, D. J.; Silva, A. C. R.; Fett-Neto, A. G.; Saffi, J.; Environ. Mol. Mutagen. 2007, 48, 728.
  • 108
    Amador, T. A.; Verotta, L.; Nunes, D. S.; Elisabetsky, E.; Planta Med 2000, 66, 770
  • 109
    Elisabetsky, E.; Amador, T. A.; Albuquerque, R. R.; Nunes, D. S.; Carvalho, A. C. T.; J. Ethnopharmacol. 1995, 48, 77.
  • 110
    Amador, T. A.; Elisabetsky, E.; Souza, D. O.; Neurochem. Res. 1996, 21, 97.
  • 111
    Moraes, T. M.; Araújo, M. H.; Bernardes, N. R.; Oliveira, D. B.; Lasunskaia, E. B.; Muzitano, M. F.; Cunha, M.; Planta Med 2011, 77, 964.
  • 112
    Kuo, Y. C.; Chien, C. C.; Tsai, W. J.; Ho, Y. H.; Antiviral Res 2001, 51, 95.
  • 113
    Beretz, A.; Roth-Georger, A.; Corre, G.; Kuballa, B.; Anton, R.; Cazenave, J. P.; Planta Med. 1985, 4, 300.
  • 114
    Zhang, C.-X.; Zhang, D-M.; Chen, M.-F.; Guan, S.-Y.; Yao, J.-H.; He, X.-X.; Lei, L.-F.; Zhong, Y.; Wang, Z.-F.; Ye, W.-C.; Planta Med. 2013, 79, 978.
  • 115
    Moller, M.; Wink, M.; Planta Med. 2007, 73, 1389.
  • 116
    Gerlach, S. L.; Rathinakumar, R.; Chakravarty, G.; Goransson, U.; Wimley, W. C.; Darwin, S. P.; Mondal, D.; Biopolymers 2010, 94, 617.
  • 117
    Schallenberger, M. A.; Newhouse, T.; Baran, P. S.; Romesberg, F. E.; J. Antibiot 2010, 63, 685.
  • 118
    Rasolonjanahary, R.; Sévenet, T.; Voegelein, F. G.; Kordon, C.; Eur. J. Pharmacol. 1995, 285, 19.
  • 119
    Nascimento, N. C.; Menguer, P. K.; Henriques, A. T.; Fett-Neto, A. G.; Plant Physiol. Biochem. 2013, 73, 33.
  • 120
    Tavares, W. S.; Grazziotti, G. H.; Souza Jr., A. A.; Sousa Freitas, S.; Consolaro, H. N.; Ribeiro, P. E.; Zanuncio, J. C.; J. Food Prot. 2013, 76, 1892.
  • 121
    Orji, O. U.; Ibiam, U. A.; Aja, P. M.; Int. J. Biol. Sci. 2014, 3, 038.
  • 122
    Merlot, S.; Hannibal, L.; Martins, S.; Martinelli, L.; Amir, H.; Lebrun, M.; Thomine, S.; J. Exp. Bot. 2014, 65, 1551.
  • 123
    Callahan, D. L.; Roessner, U.; Dumontet, V.; Livera, A. M.; Doronila, A.; Baker, A. J. M.; Kolev, S. D.; Phytochemistry 2012, 81, 80.
  • 124
    Grison, C.; Escande, V.; Petit, E.; Garoux, L.; Boulangerd, C.; Grison, C.; RSC Adv. 2013, 3, 22340.

Publication Dates

  • Publication in this collection
    Aug 2016

History

  • Received
    10 Mar 2016
  • Accepted
    10 May 2016
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br