Acessibilidade / Reportar erro

Intensity-Duration-Frequency equations (IDF) for the state of Paraíba, Brazil, and regionalization of its parameters1 1 Research developed at Universidade Federal de Campina Grande, Campina Grande, PB, Brazil

Equações de intensidade-duração-frequência (IDF) para o Estado da Paraíba, Brasil, e regionalização de seus parâmetros

ABSTRACT

In the design of major hydraulic structures, a key element is the design discharge, determined from the time series of flow or through runoff models such as the rational method, which relates the peak surface flow with a rainstorm. The design storm is generally established from the Intensity-Duration-Frequency (IDF) relationships via recording gauges data. In the absence/scarcity of these data, daily data from the rain gauge network can be used via the disaggregation process. Thus, the objective of this study is to develop the IDFs for the state of Paraíba, Brazil, where there is an extensive network of rain gauges (263 stations). For this purpose, daily precipitation data were disaggregated for various durations between 5 min and 24 hours and the best fit distribution was chosen among the Gumbel, Weibull, Pearson, Log-Pearson and Generalized Extreme Values (GEV) distributions for the time series of these durations. From the fitted distribution, rainfall for various durations and frequencies were obtained to generate the IDF curves for each location. No single satisfactory distribution was identified for all cases, with Pearson III and Log-Pearson III being the most common. For the IDF curves, the four-parameter equation was fitted and the parameter values were determined by non-linear regression. These varied a lot within the Paraíba state and were regionalized to obtain the IDF equation for any location in the state. The rainfall intensities obtained from the parameters determined in this study, when compared with those derived from the previously existing equations, show large differences and need updating.

Key words:
intense rainfall; maximum discharge; desagregation; rainfall-runoff

RESUMO

Na elaboração de projetos de obras hidráulicas um elemento chave é a vazão de projeto, obtida a partir da série histórica de vazões ou através de modelos como o método racional, que relaciona a vazão máxima com uma chuva de projeto. Esta é geralmente obtida através das relações de Intensidade-Duração-Frequência (IDF) via dados de pluviógrafos. Na escassez destes, os dados diários da rede de pluviômetros podem ser utilizados via processo de desagregação. O objetivo deste estudo é desenvolver as IDFs para o Estado da Paraíba onde existe uma extensa rede de pluviômetros (263 postos). Dados diários de precipitação foram desagregados para várias durações entre 5 min a 24 horas e foi escolhida a melhor distribuição de ajuste dentre as distribuições de Gumbel, Weibull, Pearson, Log-Pearson e Valores Extremos Generalizados (VEG), para as series destas durações. A partir da distribuição ajustada, as precipitações para diversas durações e frequências foram obtidas para gerar as curvas de IDF para cada local. Não foi identificada uma única distribuição satisfatória para todos os casos, sendo a Pearson III e Log-Pearson III as mais comuns. Para as curvas de IDF foi ajustada a equação de quatro parâmetros e os valores dos parâmetros foram determinados por regressão não linear. Estes variaram muito dentro do Estado e foram regionalizados para obter a equação de IDF para qualquer local no Estado. As intensidades de chuva obtidas a partir dos parâmetros determinados neste estudo, quando comparadas com as obtidas das equações previamente existentes, mostram grandes diferenças indicando a necessidade da atualização.

Palavras-chave:
chuvas intensas; vazão máxima; desagregação; chuva-vazão

HIGHLIGHTS:

Intense rainfalls that cause significant losses to lives and property vary widely in the state of Paraíba, Brazil.

A methodology has been developed to generate Intensity-Duration-Frequency relationships for any location in Paraíba state.

The results obtained in this study can be effectively used to select a more secure design storm for the hydraulic structures.

Introduction

The natural disasters that have occurred in Brazil have been, over the last few decades, mostly caused by flooding (Tellman et al., 2021Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A. J.; Doyle, C. S.; Brakenridge, G. R.; Erickson, T. A.; Satyback, D. A. Satellite imaging reveals increased proportion of population exposed to floods. Nature, v.596, p.80-86 2021. https://doi.org/10.1038/s41586-021-03695-w
https://doi.org/10.1038/s41586-021-03695...
; Souza & Haddad, 2021Souza, B.; Haddad, E. Climate change in Brazil: dealing with uncertainty in agricultural productivity models and the implications for economy-wide impacts, Spatial Economic Analysis, v.17, p.83-10, 2021. http://dx.doi.org/10.1080/17421772.2021.1934524
http://dx.doi.org/10.1080/17421772.2021....
). This is due to various factors including inadequate storm water drainage (Madakumbura et al., 2021Madakumbura, G. D.; Thackeray, C. W.; Norris, J.; Goldenson, N.; Hall, A. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nature Communication, v.12, p.1-9, 2021. https://doi.org/10.1038/s41467-021-24262-x
https://doi.org/10.1038/s41467-021-24262...
). This phenomenon has been increasing over the last two decades, with losses of lives and property (Souza & Haddad, 2021Souza, B.; Haddad, E. Climate change in Brazil: dealing with uncertainty in agricultural productivity models and the implications for economy-wide impacts, Spatial Economic Analysis, v.17, p.83-10, 2021. http://dx.doi.org/10.1080/17421772.2021.1934524
http://dx.doi.org/10.1080/17421772.2021....
; Ashizawa et al., 2022Ashizawa, T.; Sudo, N.; Yamamoto, H. How do Floods Affect the Economy? An Empirical Analysis using Japanese Flood Data. Tokyo: Bank of Japan, 2022. 40p.). In rural areas, heavy rains and floods remove topsoil and reduce the productivity (Souza & Haddad, 2021Souza, B.; Haddad, E. Climate change in Brazil: dealing with uncertainty in agricultural productivity models and the implications for economy-wide impacts, Spatial Economic Analysis, v.17, p.83-10, 2021. http://dx.doi.org/10.1080/17421772.2021.1934524
http://dx.doi.org/10.1080/17421772.2021....
). Adequate planning of drainage systems requires information on design discharge associated with a return period (Machado et al., 2021Machado, C. B.; Campos, T. L. O. B.; Rafee, S. A. A.; Martins, J. A.; Grimm, A. M.; Freitas, E. D. Extreme rainfall events in the macro metropolis of São Paulo: Trends and connection with climate oscillations. Journal of Applied Meteorology and Climatology, v.60, p.661-675, 2021. https://doi.org/10.1175/JAMC-D-20-0173.1
https://doi.org/10.1175/JAMC-D-20-0173.1...
; Kreibich et al., 2022Kreibich, H.; Van Loon, A. F.; Schröter, K.; Ward, P. J.; Mazzoleni, M.; Sairam, N.; Abeshu, G. W.; Agafonova, S.; Agha Kouchak, A.; Aksoy, H. and 71 more. The challenge of unprecedented floods and droughts in risk management. Nature, v. 608, p.80-86, 2022. https://doi.org/10.1038/s41586-022-04917-5
https://doi.org/10.1038/s41586-022-04917...
). This discharge can be determined from a time series of measured flow data or from a design storm rainfall through a runoff model (Dorneles et al., 2019Dorneles, V. R.; Damé, R. de C. F.; Teixeira-Gandra, C. F. A.; Méllo, L. B.; Ramirez, M. A. A.; Manke, E. B. Intensity-duration-frequency relationships of rainfall through the technique of disaggregation of daily rainfall. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.506-510, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n7p506-510
https://doi.org/10.1590/1807-1929/agriam...
; Lima Neto et al., 2021Lima Neto, V. S.; Tavares, P. R. L.; Batista, T. L. Ajuste e validação de equações IDF a partir de dados pluviométricos para cidades do estado de Pernambuco, Brasil. Revista Brasileira de Meteorologia, v.36, p.713-721, 2021. https://doi.org/10.1590/0102-7786360031
https://doi.org/10.1590/0102-7786360031...
; Suzuki et al., 2022Suzuki, Y.; Nakamura, K.; Hama, T. Peak discharge mitigation effects in different rainfall patterns at a paddy plot with a runoff control plate, Journal of Hydrology: Regional Studies, v.42, p.1-19, 2022. https://doi.org/10.1016/j.ejrh.2022.101165
https://doi.org/10.1016/j.ejrh.2022.1011...
).

In general, the design storm is derived from Intensity-Duration-Frequency (IDF) relationships (Dorneles et al., 2019Dorneles, V. R.; Damé, R. de C. F.; Teixeira-Gandra, C. F. A.; Méllo, L. B.; Ramirez, M. A. A.; Manke, E. B. Intensity-duration-frequency relationships of rainfall through the technique of disaggregation of daily rainfall. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.506-510, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n7p506-510
https://doi.org/10.1590/1807-1929/agriam...
). In the North-eastern region of Brazil, the network of recording rain gauges is sparse but, the network of conventional rain gauges is quite dense (ANA, 2021ANA - Agência Nacional das Águas. Hidro Web: Sistemas de Informações Hidrológicas. Available on: <Available on: http://hidroweb.ana.gov.br >. Accessed on: Jul. 2021.
http://hidroweb.ana.gov.br...
). The data from these gauges can be disaggregated into shorter-duration rainfall, to establish the IDF curves or equations (CETESB, 1979CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.; Silveira, 2000Silveira, A. L. L. Equação para os coeficientes de desagregação de chuva. Revista Brasileira de Recursos Hídricos . v.5, p.143-147, 2000. http://dx.doi.org/10.21168/rbrh.v5n4.p143-147
http://dx.doi.org/10.21168/rbrh.v5n4.p14...
; Aragão et al., 2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
; Caldeira et al., 2015Caldeira, T. L.; Beskow, S.; Mello, C. R. de; Vargas, M. M.; Guedes, H. A. S.; Faria, L. C. Daily rainfall disaggregation: on analysis for the Rio Grande do Sul state. Scientia Agraria, v.16, p.1-21, 2015. http://dx.doi.org/10.5380/rsa.v16i3.46320
http://dx.doi.org/10.5380/rsa.v16i3.4632...
). The rise in global temperatures necessitates an updating of all the current IDF relationships in use (Wang et al., 2020Wang, W.; Wang, L.; Miao, Y.; Cheng, C.; Chen, S. A survey on the influence of intense rainfall induced by climate warming on operation safety and service life of urban asphalt pavement. Journal of Infrastructure Preservation and Resilience, v.1, p.1-14, 2020. https://doi.org/10.1186/s43065-020-00003-0
https://doi.org/10.1186/s43065-020-00003...
; IPCC, 2022IPCC - Intergovernmental Panel on Climate Change. Climate Change 2022: Mitigation of Climate Change. 2022. Available on: <Available on: https://www.ipcc.ch/report/ar6/wg3/ >. Accessed on: Oct., 2022.
https://www.ipcc.ch/report/ar6/wg3/...
).

Thus, considering the extreme importance of IDF relationships, and the need to update the existing equations for the state of Paraíba, Brazil, the objective of the present study is to develop IDF equations for the whole state of Paraíba, by using the data from the rain gauge network.

Material and Methods

The state of Paraíba, Brazil, with an area of 56,467.242 km² (IBGE, 2021), has the states of Rio Grande do Norte to the north and Pernambuco to the south, the Atlantic Ocean to the east and the state of Ceará to the west. The average annual temperature varies between 22 and 26 ºC. Annual evaporation is very high, with potential evaporation values ranging from 1000 to 3000 mm, the latter in some locations in the Sertão and Cariri (Francisco & Santos, 2017Francisco, P.R.M.; Santos, D. Climatologia do Estado da Paraíba. 1.ed. Campina Grande: EDUFCG, 2017. 75p.), as shown in Figure 1. The average annual relative air humidity varies from 50 to 90% (Aragão, 2000Aragão, R.; Figueiredo, E. E.; Srinivasan, V. S.; Gois, R. S. S. Chuvas intensas no Estado da Paraíba. In: Simpósio de Recursos Hídricos do Nordeste, 5., 2000, Natal. Anais. Natal: ABRH, 2000. p.74-85.; Francisco & Santos, 2017Francisco, P.R.M.; Santos, D. Climatologia do Estado da Paraíba. 1.ed. Campina Grande: EDUFCG, 2017. 75p.). The Paraíba state is divided into 223 municipalities whose total population is 4,059.905 inhabitants (IBGE, 2021IBGE - Instituto Brasileiro de Geografia e Estatística. População estimada da Paraíba com data de referência 1º de julho de 2021. Available on: <Available on: https://cidades.ibge.gov.br/brasil/pb/panorama >. Accessed on: Dec.2021.
https://cidades.ibge.gov.br/brasil/pb/pa...
).

Figure 1
Location of rainfall stations and homogeneous rainfall regions in the state of Paraíba, Brazil

The Paraíba state has a humid tropical climate on the coast, with well-distributed rainfall. As one moves to the interior, the climate becomes semi-arid, rainfall becomes irregular and droughts are frequent. The spatial variation of rainfall in the Paraíba state is caused by different atmospheric systems that act on the east coast of north-eastern Brazil. There is a need for determining safer design storms through updated IDFs that would lead to design discharges that offer the expected security for the hydraulic structures and reduce the risk of flooding. The state of Paraíba has a well-defined rainy season from January to July (Francisco & Santos, 2017Francisco, P.R.M.; Santos, D. Climatologia do Estado da Paraíba. 1.ed. Campina Grande: EDUFCG, 2017. 75p.). It occurs from January to May, in the Sertão, Alto Sertão and Cariri/Curimataú (Figure 1). In the transition zone, coastal areas and marsh it occurs from April to July. In general terms, the months of March, April, and June are the wettest months in Paraíba state, with the coast being the region where the highest total rainfall is recorded. According to the studies by Becker et al. (2011Becker, C. T.; Melo, M. M. M. S.; Costa, M. N. de M.; Ribeiro, R. E. P. Caracterização climática das regiões pluviometricamente homogêneas do estado da Paraíba. Revista Brasileira de Geografia Física, v.4, p.286-299, 2011. https://doi.org/10.26848/rbgf.v4i2.232720
https://doi.org/10.26848/rbgf.v4i2.23272...
), the Paraíba state can be divided into six regions with homogeneous rainfall conditions (Figure 1) namely: Litoral, Brejo, Agreste, Cariri/Curimataú, Sertão and Alto Sertão.

In this study, the rainfall network of 263 stations monitored by the Executive Agency for Water Management of the state of Paraíba (AESA), with data from 1994 and 2020, has been used. Becker et al. (2011Becker, C. T.; Melo, M. M. M. S.; Costa, M. N. de M.; Ribeiro, R. E. P. Caracterização climática das regiões pluviometricamente homogêneas do estado da Paraíba. Revista Brasileira de Geografia Física, v.4, p.286-299, 2011. https://doi.org/10.26848/rbgf.v4i2.232720
https://doi.org/10.26848/rbgf.v4i2.23272...
) made a statistical comparison of data from 89 stations within this network, which were previously collected by the Superintendency for the Development of North-east (SUDENE) until 1990, using monthly rainfall series. The objective of this procedure was to find out if this short time series (15 years) could represent the climatology inherent in the data from SUDENE. They concluded that the series from 1996 to 2010 monitored by AESA were statistically similar to the data series up to 1990.

From this point of view, longer the time series, the better would be the representation of the climatology of the region. In the present study, daily rainfall data from the 263 stations monitored by AESA and made available by AESA (2021AESA - Agência Executiva de Gestão das Águas do Estado da Paraíba. Precipitação pluviométrica mensal, janeiro de 1994 a dezembro de 2020 para o estado da Paraíba. Available on: <Available on: http://www.aesa.pb.gov.br >. Accessed on: Jul. 2021.
http://www.aesa.pb.gov.br...
) and ANA (2021ANA - Agência Nacional das Águas. Hidro Web: Sistemas de Informações Hidrológicas. Available on: <Available on: http://hidroweb.ana.gov.br >. Accessed on: Jul. 2021.
http://hidroweb.ana.gov.br...
), for the period of 1994-2020, were considered. From the 263 stations, data from 30 were disregarded because the time series of them were less than 26 years, with the remaining 233 gauges with consistent data series of 26 years were used for the development of IDF relationships.

The relationship between Intensity-Duration-Frequency (IDF) is generally represented by Eq. 1 (Aragão et al., 2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
).

i = k · T r m d + B n (1)

where:

i - intensity (mm h-1);

Tr - return period (years);

D - duration of rainfall (min); and,

k, m, B, and n - empirical parameters of the equation.

The parameters of Eq. 1 are best determined using data collected from recording rain gauges, which record the variation of the total precipitation over time. However, these data are scarce, and processing is costly. An approach that has provided good results in many other studies (Aragão et al., 2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
; Campos et al., 2017Campos, A. R.; Silva, J. B. L.; Santos, G. G.; Ratke, R. F.; Aquino, I. O. de. Estimate of intense rainfall equation parameters for rainfall stations of the Paraíba state, Brazil. Pesquisa Agropecuária Tropical, v.47, p.15-21, 2017. https://doi.org/10.1590/1983-40632016v4743821
https://doi.org/10.1590/1983-40632016v47...
) uses daily rainfall data collected in rain gauges using a rainfall disaggregation method (CETESB, 1979CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.). This method utilizes the daily rainfall and calculates maximum rainfall values for durations ranging from 5 to 1440 min.

From the daily rainfall series, the first step would be generating the maximum daily annual rainfall series for each gauge station. A frequency analysis of this series makes it possible to adjust a probability distribution curve for these series, from which it would be possible to determine the precipitation values that might be equalled or exceeded for the return periods of 2, 5, 10, 15, 20, 25, 50, 75 and 100 years. Naghettini & Pinto (2007Naghettini, M.; Pinto, E. J. A. Hidrologia estatística. Belo Horizonte: CPRM, 2007. 600p.), and Gandini & Queiroz (2018Gandini, M. L. T.; Queiroz, P. I. B. de. Analysis of probabilistic frequency models to obtain IDF equations in the city of Cunha-SP. Revista DAE, v.66, p.105-117, 2018. http://dx.doi.org/10.4322/dae.2018.017
http://dx.doi.org/10.4322/dae.2018.017...
) indicate that the most suitable maximum event probability distributions for this type of time series are: Gumbel, Weibull, Pearson, Pearson III, Log-Pearson III, and Generalized Extreme Values (GEV). These distributions have been tested in the present study, and the distribution that fits best for each series has been used in the development of IDF Equations to determine the precipitation for any required return period.

The goodness of fit for the series of annual daily maximums to the distributions used was verified using the Kolmogorov-Smirnov (K-S) test at 0.05 level of significance (Eq. 2). The K-S test is non-parametric and evaluates the maximum deviation between the values predicted by the distribution under test and the values associated with the empirical distribution represented by the data sample, and is widely used in hydrological studies (Naghettini & Pinto, 2007Naghettini, M.; Pinto, E. J. A. Hidrologia estatística. Belo Horizonte: CPRM, 2007. 600p.; Silva et al., 2012Silva, B. M.; Montenegro, S. M. G. L.; Silva, F. B.; Araújo Filho, P. F. Chuvas intensas em localidades do Estado de Pernambuco. Revista Brasileira de Recursos Hídricos, v.17, p.135-147, 2012. https://doi.org/10.21168/rbrh.v17n3.p135-147
https://doi.org/10.21168/rbrh.v17n3.p135...
; Aragão et al., 2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
; Gandini & Queiroz, 2018Gandini, M. L. T.; Queiroz, P. I. B. de. Analysis of probabilistic frequency models to obtain IDF equations in the city of Cunha-SP. Revista DAE, v.66, p.105-117, 2018. http://dx.doi.org/10.4322/dae.2018.017
http://dx.doi.org/10.4322/dae.2018.017...
). In this study, the frequency of occurrence of an event of order mi in a sample of n events was obtained by the Weibull method (mi/(n+1)), (Naghettini & Pinto, 2007Naghettini, M.; Pinto, E. J. A. Hidrologia estatística. Belo Horizonte: CPRM, 2007. 600p.). From the adjusted distribution, the values of maximum daily rainfall were obtained for various return periods. After adjusting the maximum daily value for the duration of 24 hours, these values were disaggregated into shorter intervals as by the methodology of CETESB (1979CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.).

T k s = m a x l i N F Y i - i N + 1 (2)

where:

Tks - maximum observed deviation from the cumulative distribution function under test;

F(Yi) - theoretical cumulative distribution function value;

i - index value starting at 1 and extending to N; and,

N - the size of the historical rainfall series.

Once the series of intensities for different return periods and durations were generated, the next step was to fit Eq. 1 for each rain gauge location. Nonlinear regression method was used to obtain the optimal values of the parameters of Eq. 1. In the optimization process to determine the parameters, it is customary to employ objective functions that seek to minimize the error between the values generated by the equation and those observed. However, as Eq. 1 is nonlinear (Aragão et al., 2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
), the use of optimization may lead to non-global optimal values of the parameters. Thus, to ensure global optimization, the approach used was to use an objective function that allows identifying the local optimal values (Eq. 3) and, from these values, use another objective function (Eq. 4) to determine the global optimal values of the parameters of Eq. 1. In this sense, Eq. 3 is an objective function for minimizing the relative error (ERR), and the second one, Eq. 4, maximizes the Nash-Sutcliffe efficiency coefficient -NS (Moriasi et al., 2007Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R. D.; Veith, T. Model Evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, v.50, p.885-900, 2007. https://doi.org/10.13031/2013.23153
https://doi.org/10.13031/2013.23153...
). The use of Eq. 3 is an innovative approach of this study and the local optimal value is obtained when the relative error (ERR) is as low as possible. The NS value can vary from -∞ to 1, with NS equal to 1, for a perfect fit to the observed data.

E R R = m i n i = 1 n p i = 1 n d S i m i - O b s i O b s i (3)

N S = m a x 1 - i = 1 n p O b s i - S i m i 2 i = 1 n O b s i - O b s ¯ 2 (4)

where:

np - number of return periods;

nd- number of durations used for the disaggregation of rainfall;

Simi - simulated intensity at the instant of time i;

Obsi - intensity at the instant of time i; and,

Obs - mean value of the observed data.

Once the parameters of Eq. 1 were obtained, the degree of proximity between the values calculated by Eq. 1 and the values of the generated series was verified through the coefficient of determination (R²; Eq. 5); as well as by the adjustment coefficient (CA; Eq. 6); and by the residual mass coefficient (CMR; Eq. 7).

The CA coefficient describes the ratio between the dispersion of calculated and observed values and should tend to the value of 1 (one). The CMR coefficient tends to zero in the absence of systematic deviations between the observed and calculated values, indicating over estimation (CMR > 0) or underestimation (CMR < 0) of the values estimated by the adjusted probability distributions (Silva et al., 2012Silva, B. M.; Montenegro, S. M. G. L.; Silva, F. B.; Araújo Filho, P. F. Chuvas intensas em localidades do Estado de Pernambuco. Revista Brasileira de Recursos Hídricos, v.17, p.135-147, 2012. https://doi.org/10.21168/rbrh.v17n3.p135-147
https://doi.org/10.21168/rbrh.v17n3.p135...
). The above four criteria were used to choose the best distribution for the series when no single distribution stood out as the best in the K-S adherence test.

R 2 = n · Σ M i · T i 2 n · Σ T i 2 - Σ T i 2 n · Σ M i 2 - Σ M i 2 (5)

C A = Σ M i - M ¯ 2 Σ T i - M ¯ 2 (6)

C M R = Σ M i - Σ T i Σ M i (7)

where:

n - number of observations;

M - mean of values calculated by the model;

Mi - values calculated by the model; and,

Ti - values from the observed time series.

All processing of daily rainfall information, determination of the maximum annual daily rainfall, as well as the calculation of various statistics (mean, mode, standard deviation, median, variance), K-S test, NS coefficient, coefficient of determination (R²), coefficient of adjustment (CA), residual mass coefficient (CMR), as well as other calculations necessary to obtain the parameters of Eq. 1, were performed through scripts developed in R 4.2.2 (R Core Team, 2022R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2022. Available on: <Available on: https://www.R-project.org/ >. Accessed on Jun. 2022.
https://www.R-project.org/...
), or via the use of packages available for this language, namely: tibble; optimx; hydroGOF; fitdistrplus; e1071; smwrBase; evd; GEVcdn; PearsonDS; tidyverse; and readxl. Once the parameters of the IDF equation were determined, its regionalization was performed using the kriging method and using the R gstat package (R Core Team, 2022R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2022. Available on: <Available on: https://www.R-project.org/ >. Accessed on Jun. 2022.
https://www.R-project.org/...
).

Among the methods available to transform daily rainfall into shorter intervals, the method proposed by CETESB (1979CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.) has been used by Aragão et al. (2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
), and Caldeira et al. (2015Caldeira, T. L.; Beskow, S.; Mello, C. R. de; Vargas, M. M.; Guedes, H. A. S.; Faria, L. C. Daily rainfall disaggregation: on analysis for the Rio Grande do Sul state. Scientia Agraria, v.16, p.1-21, 2015. http://dx.doi.org/10.5380/rsa.v16i3.46320
http://dx.doi.org/10.5380/rsa.v16i3.4632...
). In this method, the total measured daily rainfall is related to the 24 hour rainfall, and the maximums for lesser intervals are established as a fraction of this value (Table 1). Caldeira et al. (2015Caldeira, T. L.; Beskow, S.; Mello, C. R. de; Vargas, M. M.; Guedes, H. A. S.; Faria, L. C. Daily rainfall disaggregation: on analysis for the Rio Grande do Sul state. Scientia Agraria, v.16, p.1-21, 2015. http://dx.doi.org/10.5380/rsa.v16i3.46320
http://dx.doi.org/10.5380/rsa.v16i3.4632...
) tested three different groups of disaggregation coefficients proposed by Back et al. (2012Back, A. J.; Oliveira, J. L. R.; Henn, A. Relações entre precipitações intensas de diferentes durações para desagregação da chuva diária em Santa Catarina. Revista Brasileira de Engenharia Agrícola e Ambiental , v.16, p.391-398, 2012. https://doi.org/10.1590/S1415-43662012000400009
https://doi.org/10.1590/S1415-4366201200...
), CETESB (1979CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.) and Damé et al. (2010Damé, R. C. F.; Teixeira, C. F. A.; Terra, V. S. S.; Rosskoff, J. L. Hidrograma de projeto em função da metodologia utilizada na obtenção da precipitação. Revista Brasileira de Engenharia Agrícola e Ambiental , v. 14, p.46-54, 2010. https://doi.org/10.1590/S1415-43662010000100007
https://doi.org/10.1590/S1415-4366201000...
), utilizing data from 15 recording rain gauge stations in Rio Grande do Sul state. The values of the parameters of the IDF equations were generated, and the results were compared with the values of the IDF generated from rainfall data. They concluded that, from the three groups of disaggregation coefficients used, the one proposed by CETESB (1979CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.) generated results closer to those obtained with data from recording rain gauges. On the other hand, Abreu et al. (2022Abreu, M. C.; Cecílio, R. A.; Pruski, F. F.; Almeida, L. T.; Santos, G. R.; Zanetti, S. S.; Pereira, S. B.; Silva, D. D. Daily Rainfall disaggregation to estimate the intensity-duration-frequency relationship in Minas Gerais State, Brazil. Brazilian Archives of Biology and Technology, v.65. p.1-15. 2022. https://doi.org/10.1590/1678-4324-2022210694
https://doi.org/10.1590/1678-4324-202221...
) analysed the equivalence and applicability of the disaggregation methods compared with sub-daily rain gauge data, concluding that in case of existence of this data the design storm must be based on these data and, in the absence of such data, the disaggregation coefficients by CETESB (1979CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.) could give satisfactory results, which is consistent with the present approach.

Table 1
Disaggregation coefficients for different rainfall durations

For each rainfall duration, a minimum value above which rainfall can be considered as intense as indicated by CETESB (1979CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.) was taken into account (Table 2). Silva et al. (2012Silva, B. M.; Montenegro, S. M. G. L.; Silva, F. B.; Araújo Filho, P. F. Chuvas intensas em localidades do Estado de Pernambuco. Revista Brasileira de Recursos Hídricos, v.17, p.135-147, 2012. https://doi.org/10.21168/rbrh.v17n3.p135-147
https://doi.org/10.21168/rbrh.v17n3.p135...
) and Aragão et al. (2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
) also used these minimum values.

Table 2
Minimum precipitation values adopted

To use this methodology (Tables 1 and 2) through computer programs, Silveira (2000Silveira, A. L. L. Equação para os coeficientes de desagregação de chuva. Revista Brasileira de Recursos Hídricos . v.5, p.143-147, 2000. http://dx.doi.org/10.21168/rbrh.v5n4.p143-147
http://dx.doi.org/10.21168/rbrh.v5n4.p14...
) adjusted an empirical exponential equation (Eq. 8) for the coefficients mentioned in Table 1, starting with the 24 hour rainfall and this equation is the one that was used in this study. The best fit distribution at each station was used to obtain the maximum daily rainfall for the desired return periods. These values were first transformed into 24 hours rainfall by multiplying by 1.14 (CETESB, 1979CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.) and then disaggregated using Eq. 8. In Eq. 8, C24(d) is the coefficient applied to 24 hours rainfall for the duration “d” desired in minutes (Table 1).

C 24 d = e 1 . 5 · ln ln d 7 . 3 (8)

While the rainfall fractions for different durations from 5 to 1440 min were generated using Eq. 8, the series were established for the return periods of 2, 5, 10, 15, 20, 25, 50, 75, and 100 years. Thus, intensity and duration data series for these return periods were established. The optimal parameters of Eq. 1 were determined for each location from these series. The same procedure was used by Aragão et al. (2000Aragão, R.; Figueiredo, E. E.; Srinivasan, V. S.; Gois, R. S. S. Chuvas intensas no Estado da Paraíba. In: Simpósio de Recursos Hídricos do Nordeste, 5., 2000, Natal. Anais. Natal: ABRH, 2000. p.74-85.) and Aragão et al. (2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
) for the regionalization of such parameters for the state of Paraiba and the state of Sergipe, respectively.

Results and Discussion

Table 3 presents the results for each rain gauge station: the location, the adjustment distribution (D), the climatic region (RC), and the optimized parameters (K, m, B, n) of Eq. 1. For the 233 stations utilized, the number of the stations that best adjusted to each of the distributions used were: GEV - 46 (19.7%), Gumbel - 38 (16.30%), Log-Pearson III - 56 (24.03%), Pearson - 20 (8.58%), Pearson III - 48 (20.60%) and Weibull - 25 (10.70%). Silva et al. (2012Silva, B. M.; Montenegro, S. M. G. L.; Silva, F. B.; Araújo Filho, P. F. Chuvas intensas em localidades do Estado de Pernambuco. Revista Brasileira de Recursos Hídricos, v.17, p.135-147, 2012. https://doi.org/10.21168/rbrh.v17n3.p135-147
https://doi.org/10.21168/rbrh.v17n3.p135...
) and Aragão et al. (2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
), who applied similar methodologies for the states of Pernambuco and Sergipe, respectively, observed a predominance of Gumbel or Weibull distributions. In the present study, it was observed that there was no predominance of any one distribution, being the most frequent ones, the Log-Pearson III (22.74%) and Pearson III (20.6%) distributions. These results show that, despite being widely used to adjust maximum or minimum extreme values, the Gumbel distribution is not always the one with optimal results.

Table 3
Selected rain gauge stations and the parameter values of the Intensity-Duration-Frequency (IDF) equation

In terms of the indices used to assess the fit of the data to the IDF equation (Eq. 1), it is possible to summarize the results as follows: among the 233 selected stations, the N-S (Nash-Sutcliffe index) had a variation of 0.809 (Frei Martinho) to 0.996 (Salgadinho), and the R² value ranged from 0.783 (Frei Martinho) to 0.973 (Salgadinho). These stations where the indices present extreme values (minimum or maximum) are in the climatic region of Sertão (Frei Martinho) or Cariri/Curimataú (Salgadinho), with the Salgadinho station being in the transition region between the region of Cariri and the Sertão of Paraíba state.

The parameters K, m, B, n, of Eq. 1, varied a lot between the rain gauge stations (Table 3), indicating the large climatic variability in the Paraíba state and the need to determine these equations for each location.

Table 3 indicates that: the parameter K ranges from 558.92 (Ingá - in the Agreste) to 1695.47 (João Pessoa-Mangabeira), the parameter m varies from 0.067 (Montadas - in the Agreste) to 0.423 (Pilar - in the Agreste), the parameter B varies from 8.19 (São José da Lagoa Tapada - in the Alto Sertão) to 15.55 (Pilar - in the Agreste), and the parameter n varies from 0.654 (São José da Lagoa Tapada - in the Alto Sertão) to 0.817 (Pilar - in the Agreste). This wide variability of the parameters of Eq. 1 means a great variability in the occurrence of intense rains. This fact was also observed by Silva et al. (2012Silva, B. M.; Montenegro, S. M. G. L.; Silva, F. B.; Araújo Filho, P. F. Chuvas intensas em localidades do Estado de Pernambuco. Revista Brasileira de Recursos Hídricos, v.17, p.135-147, 2012. https://doi.org/10.21168/rbrh.v17n3.p135-147
https://doi.org/10.21168/rbrh.v17n3.p135...
), and Aragão et al. (2013Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
https://doi.org/10.1590/S1415-4366201300...
).

For a comparative evaluation of the results of the present study, with those of Aragão et al. (2000Aragão, R.; Figueiredo, E. E.; Srinivasan, V. S.; Gois, R. S. S. Chuvas intensas no Estado da Paraíba. In: Simpósio de Recursos Hídricos do Nordeste, 5., 2000, Natal. Anais. Natal: ABRH, 2000. p.74-85.) and Campos et al. (2017Campos, A. R.; Silva, J. B. L.; Santos, G. G.; Ratke, R. F.; Aquino, I. O. de. Estimate of intense rainfall equation parameters for rainfall stations of the Paraíba state, Brazil. Pesquisa Agropecuária Tropical, v.47, p.15-21, 2017. https://doi.org/10.1590/1983-40632016v4743821
https://doi.org/10.1590/1983-40632016v47...
), rainfall intensities were calculated with a return period of 10 years (for all durations in Table 2) for the stations of Campina Grande, Guarabira, São João do Rio do Peixe and Monteiro. These stations are located in different climatic regions (Figure 1) and were chosen arbitrarily.

In general, the intensity values calculated by Aragão et al. (2000Aragão, R.; Figueiredo, E. E.; Srinivasan, V. S.; Gois, R. S. S. Chuvas intensas no Estado da Paraíba. In: Simpósio de Recursos Hídricos do Nordeste, 5., 2000, Natal. Anais. Natal: ABRH, 2000. p.74-85.) were slightly higher than the other two for Campina Grande, São João do Rio do Peixe, and Monteiro. However, the calculation of R2 and the NS values permit a good comparative evaluation by correlating the values generated by Aragão et al. (2000Aragão, R.; Figueiredo, E. E.; Srinivasan, V. S.; Gois, R. S. S. Chuvas intensas no Estado da Paraíba. In: Simpósio de Recursos Hídricos do Nordeste, 5., 2000, Natal. Anais. Natal: ABRH, 2000. p.74-85.), taken here as a reference, with those generated in the present study, as well as by Campos et al. (2017Campos, A. R.; Silva, J. B. L.; Santos, G. G.; Ratke, R. F.; Aquino, I. O. de. Estimate of intense rainfall equation parameters for rainfall stations of the Paraíba state, Brazil. Pesquisa Agropecuária Tropical, v.47, p.15-21, 2017. https://doi.org/10.1590/1983-40632016v4743821
https://doi.org/10.1590/1983-40632016v47...
) for the same locations (Table 4).

Table 4
R2 and NS values obtained by correlating the results generated with the parameters of Aragão et al. (2000Aragão, R.; Figueiredo, E. E.; Srinivasan, V. S.; Gois, R. S. S. Chuvas intensas no Estado da Paraíba. In: Simpósio de Recursos Hídricos do Nordeste, 5., 2000, Natal. Anais. Natal: ABRH, 2000. p.74-85.), taken as a reference, and those from Campos et al. (2017Campos, A. R.; Silva, J. B. L.; Santos, G. G.; Ratke, R. F.; Aquino, I. O. de. Estimate of intense rainfall equation parameters for rainfall stations of the Paraíba state, Brazil. Pesquisa Agropecuária Tropical, v.47, p.15-21, 2017. https://doi.org/10.1590/1983-40632016v4743821
https://doi.org/10.1590/1983-40632016v47...
) and from the present study

Aragão et al. (2000Aragão, R.; Figueiredo, E. E.; Srinivasan, V. S.; Gois, R. S. S. Chuvas intensas no Estado da Paraíba. In: Simpósio de Recursos Hídricos do Nordeste, 5., 2000, Natal. Anais. Natal: ABRH, 2000. p.74-85.) used the limited data from the recording rain gauges operated by SUDENE to develop the IDF equations for 16 locations in the state of Paraíba. However, given the large extension of the state, many important cities and regions of the state were not covered by this study. Campos et al. (2017Campos, A. R.; Silva, J. B. L.; Santos, G. G.; Ratke, R. F.; Aquino, I. O. de. Estimate of intense rainfall equation parameters for rainfall stations of the Paraíba state, Brazil. Pesquisa Agropecuária Tropical, v.47, p.15-21, 2017. https://doi.org/10.1590/1983-40632016v4743821
https://doi.org/10.1590/1983-40632016v47...
) used daily rainfall data to determine the IDF equations for 90 rain gauge stations in the state of Paraíba.

The results of the present study are consistent with the trend of the previous ones and present better indices of performance. Thus, using the values of the parameters of Eq. 1, presented in this study, would be safer for calculating the design discharge. Considering a return period (Tr) of 10 years and a rainfall duration of t = 10 min, widely used in urban micro-drainage works (Souza et al., 2019Souza, G. R. de; Bello, I. P.; Oliveira, L. F. C. de; Corrêa, F.V. Heavy rainfall maps in Brazil to 5 years return period. Revista Ambiente & Água, v.14, p.1-10, 2019. https://doi.org/10.4136/ambi-agua.2403
https://doi.org/10.4136/ambi-agua.2403...
), the intensities for all the stations in Table 3 were calculated and the values of maximum and minimum intensities in each climatic region of Figure 1 were identified and are presented in Table 5.

Table 5
Maximum and minimum intensity values calculated for each climatic region and the stations where they were determined

These results show a great variation in rainfall intensity from the east (coast) to the west (Alto Sertão), with the lowest intensity values at stations located in the Serra da Borborema region (Agreste to Sertão transition). Araújo et al. (2016Araújo, A. R.; Belchior, G. P. N.; Viegas, T. E. de S. Os impactos das mudanças climáticas no Nordeste brasileiro. Fortaleza: Fundação Sintaf, 2016. 382p.) cited that rainfall in the Sertão and Alto Sertão regions is greatly influenced by the effect of the intertropical convergence zone (ITCZ), high-level cyclonic vortices (HCV), while rainfall in the coastal region is greatly influenced by squall lines (LI), which occur from January to March and promote large volumes of rain. In addition, the same authors mention that the Borborema mountain range influences the values of intensities for the stations located in the region, a fact that is also evident in the present study.

It is observed that for Litoral, Cariri/Curimataú, and Alto Sertão, the highest values of intense rainfall as calculated, are very close, around 163.46 mm h-1, differing between them by only 7%. The values of K and B parameters were also higher for these climatic regions. The wide variation of the parameter K indicates a great variability of intense rains among the climatic regions of Paraíba.

Table 6 presents the maximum and minimum values of the parameters in each climatic region of the Paraíba state. A large variation of the parameters between the regions is noticed, and the transitional Agreste region presents the widest range. This variation occurs due to the climatic condition of the transition from the coastal to the Cariri/Curimataú region.

Table 6
Maximum (max) and minimum (min) values of parameters K, m, B, n, of the Intensity-Duration-Frequency (IDF) equation for the climatic regions of the state of Paraíba

The average values of the IDF parameters were calculated for each climatic region, as well as the intensity of the 10 min rainfall for a 10 years return period, whose values are shown in Table 7. Values of the parameter K and rainfall intensity values vary a lot from the coastal region to the state’s interior. The other parameters presented a very narrow range of variation. However, an interesting fact is that in the Cariri/Curimataú region, where rainfall totals are, on average, low, the intensity of heavy rainfalls is close to those of Sertão and Alto Sertão and higher than those of Agreste and Brejo.

Table 7
Average parameters of the Intensity-Duration-Frequency (IDF) equation for the climatic regions

The availability of a large number of rain gauge stations (233) made it possible to trace isolines of the parameters within the Paraíba state, enabling their regionalization, as shown in Figures 2 to 5. These figures help to determine the values of the parameters of Eq. 1 for any location by interpolating the parameter values. Once the parameter values for the desired location are obtained, the rainfall intensities can be calculated by Eq. 1.

Figure 2
Spatialization of parameter K

Figure 3
Spatialization of parameter m

Figure 4
Spatialization of parameter B

Figure 5
Spatialization of parameter n

Conclusions

  1. The availability of a large number of well-distributed rainfall stations in the state of Paraíba, Brazil, permits the determination of Intensity-Duration-Frequency (IDF) relationships in the form of Eq. 1 for any location through the regionalization of its parameters K, B, m, n.

  2. The Pearson III and Log-Pearson III distributions were the most frequent, with 22.7 and 20.6% of the total, respectively.

  3. The parameters K, B, m, n of the Intensity-Duration-Frequency (IDF equation) varied a lot from the coast to the Alto Sertão, with the lowest values found in the Agreste/Cariri/Curimataú region of the Paraíba state, Brazil, and the highest values in the Litoral and Sertão/Alto Sertão.

  4. In most cases, the intensities of rainfall obtained in this study were higher compared to the earlier ones. Thus, using the results of this study would provide higher levels of safety for drainage works in the state of Paraíba, Brazil.

Acknowledgement

The authors are grateful to UFCG, for the assistance with the infrastructure and to AESA and ANA for providing the precipitation data.

Literature Cited

  • Abreu, M. C.; Cecílio, R. A.; Pruski, F. F.; Almeida, L. T.; Santos, G. R.; Zanetti, S. S.; Pereira, S. B.; Silva, D. D. Daily Rainfall disaggregation to estimate the intensity-duration-frequency relationship in Minas Gerais State, Brazil. Brazilian Archives of Biology and Technology, v.65. p.1-15. 2022. https://doi.org/10.1590/1678-4324-2022210694
    » https://doi.org/10.1590/1678-4324-2022210694
  • AESA - Agência Executiva de Gestão das Águas do Estado da Paraíba. Precipitação pluviométrica mensal, janeiro de 1994 a dezembro de 2020 para o estado da Paraíba. Available on: <Available on: http://www.aesa.pb.gov.br >. Accessed on: Jul. 2021.
    » http://www.aesa.pb.gov.br
  • ANA - Agência Nacional das Águas. Hidro Web: Sistemas de Informações Hidrológicas. Available on: <Available on: http://hidroweb.ana.gov.br >. Accessed on: Jul. 2021.
    » http://hidroweb.ana.gov.br
  • Aragão, R.; Figueiredo, E. E.; Srinivasan, V. S.; Gois, R. S. S. Chuvas intensas no Estado da Paraíba. In: Simpósio de Recursos Hídricos do Nordeste, 5., 2000, Natal. Anais. Natal: ABRH, 2000. p.74-85.
  • Aragão, R.; Santana, G. R.; Costa, C. E. F. F.; Cruz, M. A. S.; Figueiredo, E. E.; Srinivasan, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.243-252, 2013. https://doi.org/10.1590/S1415-43662013000300001
    » https://doi.org/10.1590/S1415-43662013000300001
  • Araújo, A. R.; Belchior, G. P. N.; Viegas, T. E. de S. Os impactos das mudanças climáticas no Nordeste brasileiro. Fortaleza: Fundação Sintaf, 2016. 382p.
  • Ashizawa, T.; Sudo, N.; Yamamoto, H. How do Floods Affect the Economy? An Empirical Analysis using Japanese Flood Data. Tokyo: Bank of Japan, 2022. 40p.
  • Back, A. J.; Oliveira, J. L. R.; Henn, A. Relações entre precipitações intensas de diferentes durações para desagregação da chuva diária em Santa Catarina. Revista Brasileira de Engenharia Agrícola e Ambiental , v.16, p.391-398, 2012. https://doi.org/10.1590/S1415-43662012000400009
    » https://doi.org/10.1590/S1415-43662012000400009
  • Becker, C. T.; Melo, M. M. M. S.; Costa, M. N. de M.; Ribeiro, R. E. P. Caracterização climática das regiões pluviometricamente homogêneas do estado da Paraíba. Revista Brasileira de Geografia Física, v.4, p.286-299, 2011. https://doi.org/10.26848/rbgf.v4i2.232720
    » https://doi.org/10.26848/rbgf.v4i2.232720
  • Caldeira, T. L.; Beskow, S.; Mello, C. R. de; Vargas, M. M.; Guedes, H. A. S.; Faria, L. C. Daily rainfall disaggregation: on analysis for the Rio Grande do Sul state. Scientia Agraria, v.16, p.1-21, 2015. http://dx.doi.org/10.5380/rsa.v16i3.46320
    » http://dx.doi.org/10.5380/rsa.v16i3.46320
  • Campos, A. R.; Silva, J. B. L.; Santos, G. G.; Ratke, R. F.; Aquino, I. O. de. Estimate of intense rainfall equation parameters for rainfall stations of the Paraíba state, Brazil. Pesquisa Agropecuária Tropical, v.47, p.15-21, 2017. https://doi.org/10.1590/1983-40632016v4743821
    » https://doi.org/10.1590/1983-40632016v4743821
  • CETESB - Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1979. 466p.
  • Damé, R. C. F.; Teixeira, C. F. A.; Terra, V. S. S.; Rosskoff, J. L. Hidrograma de projeto em função da metodologia utilizada na obtenção da precipitação. Revista Brasileira de Engenharia Agrícola e Ambiental , v. 14, p.46-54, 2010. https://doi.org/10.1590/S1415-43662010000100007
    » https://doi.org/10.1590/S1415-43662010000100007
  • Dorneles, V. R.; Damé, R. de C. F.; Teixeira-Gandra, C. F. A.; Méllo, L. B.; Ramirez, M. A. A.; Manke, E. B. Intensity-duration-frequency relationships of rainfall through the technique of disaggregation of daily rainfall. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.506-510, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n7p506-510
    » https://doi.org/10.1590/1807-1929/agriambi.v23n7p506-510
  • Francisco, P.R.M.; Santos, D. Climatologia do Estado da Paraíba. 1.ed. Campina Grande: EDUFCG, 2017. 75p.
  • Gandini, M. L. T.; Queiroz, P. I. B. de. Analysis of probabilistic frequency models to obtain IDF equations in the city of Cunha-SP. Revista DAE, v.66, p.105-117, 2018. http://dx.doi.org/10.4322/dae.2018.017
    » http://dx.doi.org/10.4322/dae.2018.017
  • IBGE - Instituto Brasileiro de Geografia e Estatística. População estimada da Paraíba com data de referência 1º de julho de 2021. Available on: <Available on: https://cidades.ibge.gov.br/brasil/pb/panorama >. Accessed on: Dec.2021.
    » https://cidades.ibge.gov.br/brasil/pb/panorama
  • IPCC - Intergovernmental Panel on Climate Change. Climate Change 2022: Mitigation of Climate Change. 2022. Available on: <Available on: https://www.ipcc.ch/report/ar6/wg3/ >. Accessed on: Oct., 2022.
    » https://www.ipcc.ch/report/ar6/wg3/
  • Kreibich, H.; Van Loon, A. F.; Schröter, K.; Ward, P. J.; Mazzoleni, M.; Sairam, N.; Abeshu, G. W.; Agafonova, S.; Agha Kouchak, A.; Aksoy, H. and 71 more. The challenge of unprecedented floods and droughts in risk management. Nature, v. 608, p.80-86, 2022. https://doi.org/10.1038/s41586-022-04917-5
    » https://doi.org/10.1038/s41586-022-04917-5
  • Lima Neto, V. S.; Tavares, P. R. L.; Batista, T. L. Ajuste e validação de equações IDF a partir de dados pluviométricos para cidades do estado de Pernambuco, Brasil. Revista Brasileira de Meteorologia, v.36, p.713-721, 2021. https://doi.org/10.1590/0102-7786360031
    » https://doi.org/10.1590/0102-7786360031
  • Machado, C. B.; Campos, T. L. O. B.; Rafee, S. A. A.; Martins, J. A.; Grimm, A. M.; Freitas, E. D. Extreme rainfall events in the macro metropolis of São Paulo: Trends and connection with climate oscillations. Journal of Applied Meteorology and Climatology, v.60, p.661-675, 2021. https://doi.org/10.1175/JAMC-D-20-0173.1
    » https://doi.org/10.1175/JAMC-D-20-0173.1
  • Madakumbura, G. D.; Thackeray, C. W.; Norris, J.; Goldenson, N.; Hall, A. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nature Communication, v.12, p.1-9, 2021. https://doi.org/10.1038/s41467-021-24262-x
    » https://doi.org/10.1038/s41467-021-24262-x
  • Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R. D.; Veith, T. Model Evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, v.50, p.885-900, 2007. https://doi.org/10.13031/2013.23153
    » https://doi.org/10.13031/2013.23153
  • Naghettini, M.; Pinto, E. J. A. Hidrologia estatística. Belo Horizonte: CPRM, 2007. 600p.
  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2022. Available on: <Available on: https://www.R-project.org/ >. Accessed on Jun. 2022.
    » https://www.R-project.org/
  • Silva, B. M.; Montenegro, S. M. G. L.; Silva, F. B.; Araújo Filho, P. F. Chuvas intensas em localidades do Estado de Pernambuco. Revista Brasileira de Recursos Hídricos, v.17, p.135-147, 2012. https://doi.org/10.21168/rbrh.v17n3.p135-147
    » https://doi.org/10.21168/rbrh.v17n3.p135-147
  • Silveira, A. L. L. Equação para os coeficientes de desagregação de chuva. Revista Brasileira de Recursos Hídricos . v.5, p.143-147, 2000. http://dx.doi.org/10.21168/rbrh.v5n4.p143-147
    » http://dx.doi.org/10.21168/rbrh.v5n4.p143-147
  • Souza, B.; Haddad, E. Climate change in Brazil: dealing with uncertainty in agricultural productivity models and the implications for economy-wide impacts, Spatial Economic Analysis, v.17, p.83-10, 2021. http://dx.doi.org/10.1080/17421772.2021.1934524
    » http://dx.doi.org/10.1080/17421772.2021.1934524
  • Souza, G. R. de; Bello, I. P.; Oliveira, L. F. C. de; Corrêa, F.V. Heavy rainfall maps in Brazil to 5 years return period. Revista Ambiente & Água, v.14, p.1-10, 2019. https://doi.org/10.4136/ambi-agua.2403
    » https://doi.org/10.4136/ambi-agua.2403
  • Suzuki, Y.; Nakamura, K.; Hama, T. Peak discharge mitigation effects in different rainfall patterns at a paddy plot with a runoff control plate, Journal of Hydrology: Regional Studies, v.42, p.1-19, 2022. https://doi.org/10.1016/j.ejrh.2022.101165
    » https://doi.org/10.1016/j.ejrh.2022.101165
  • Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A. J.; Doyle, C. S.; Brakenridge, G. R.; Erickson, T. A.; Satyback, D. A. Satellite imaging reveals increased proportion of population exposed to floods. Nature, v.596, p.80-86 2021. https://doi.org/10.1038/s41586-021-03695-w
    » https://doi.org/10.1038/s41586-021-03695-w
  • Wang, W.; Wang, L.; Miao, Y.; Cheng, C.; Chen, S. A survey on the influence of intense rainfall induced by climate warming on operation safety and service life of urban asphalt pavement. Journal of Infrastructure Preservation and Resilience, v.1, p.1-14, 2020. https://doi.org/10.1186/s43065-020-00003-0
    » https://doi.org/10.1186/s43065-020-00003-0
  • 1 Research developed at Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
  • Financing statement:

    CNPq has supported this research through a Doctoral Fellowship to Fagner F. da Costa (File No. 401016/2019-6), and Research Fellowships to Iana A. A. Rufino (File No. 314373/2023-3) and Vajapeyam S. Srinivasan (File No. 30694/2018-0). FAPESQ-PB supported part of the work by financing a research project (file No. 017/2023).
  • Supplementary documents:

    There are no supplementary sources.

Edited by

Editors: Lauriane Almeida dos Anjos Soares & Carlos Alberto Vieira de Azevedo

Data availability

There are no supplementary sources.

Publication Dates

  • Publication in this collection
    16 Aug 2024
  • Date of issue
    Oct 2024

History

  • Received
    23 Feb 2024
  • Accepted
    12 May 2024
  • Published
    24 June 2024
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com