Acessibilidade / Reportar erro

Natural compounds and their potential use in stored grain treatment: A review1 1 Research developed at Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, MG, Brazil

Compostos naturais e seu potencial emprego no tratamento de grãos armazenados: Uma revisão

ABSTRACT

Grain production is steadily increasing; however, the static storage capacity remains inadequate in Brazil. The lack of proper facilities and the precarious and inadequate storage conditions lead to post-harvest losses due to factors interacting with the grains, causing their deterioration. Chemical treatments are commonly used to reverse these effects; however, their replacement with natural substances has been sought due to environmental and human health concerns. The objective of this review was to discuss a sustainable strategy for treating stored grains, focusing on the use of natural compounds with bioactive properties, such as antifungal, antioxidant, and insecticidal activities, with potential for further studies. Natural compounds with useful properties for application in grain storage were outlined. Research on the use of natural compounds in grain treatment is still in its early stages, requiring progress in identifying new promising compounds, understanding the mechanisms of action, and developing and optimizing effective extraction, application, and formulation processes to make the use of these substances viable.

Key words:
sustainability; bioactives; storage; natural products

RESUMO

A produção de grãos apresenta crescimento constante, entretanto, a capacidade estatística de armazenamento permanece deficitária no Brasil. A falta de estruturas e a precariedade e inadequação no armazenamento ocasionam perdas na pós-colheita, devido ação de fatores que interagem com os grãos, culminando na sua deterioração. Para reversão desses efeitos, o tratamento químico é realizado, contudo, busca-se por sua substituição por substâncias naturais devido a implicações ambientais e medicinais. Objetivou-se com esta revisão, a discussão de uma potencial estratégia sustentável para o tratamento de grãos armazenados, com foco no uso de compostos naturais com propriedades bioativas como antifúngica, antioxidante e inseticida, que os torna potenciais para serem estudados. Foram delineados compostos naturais que possuem propriedades úteis para aplicação no armazenamento de grãos. Pesquisas a respeito do emprego dos compostos naturais no tratamento de grãos são incipientes, carecendo de avanços na identificação de novos compostos promissores, melhor compreensão dos mecanismos de ação e otimização/desenvolvimento de processos de extração, aplicação e formulação eficazes que viabilizem o futuro uso das substâncias.

Palavras-chave:
sustentabilidade; bioativos; armazenamento; produtos naturais

HIGHLIGHTS:

Using natural compounds for treating stored grains emerges as an eco-friendly and promising alternative.

The recognized bioactivities of classes of natural compounds can be adapted for application in grain storage.

Research on natural compounds in stored grains is still incipient, requiring more tests to make their application viable.

Introduction

The grain production sector has been continuously growing due to advances in research (Ygit, 2019Ygit, E. Development of an expression for the volume of off-centered conical pile inside a cylindrical silo. Measurement, v.146, p.903-911, 2019. https://doi.org/10.1016/j.measurement.2019.07.036
https://doi.org/10.1016/j.measurement.20...
; Ziegler et al., 2021Ziegler, V.; Paraginski, R. T.; Ferreira, C. D. Grain storage systems and effects of moisture, temperature and time on grain quality - A review. Journal of Stored Products Research , v.91, e101770, 2021. https://doi.org/10.1016/j.jspr.2021.101770
https://doi.org/10.1016/j.jspr.2021.1017...
). However, this increase has accentuated the deficit in static grain storage capacity, which, combined with improper facilities, inadequate techniques and lack of management, leads to grain losses (Silva et al., 2021Silva, A. O. da; Silva, A. O. da; Gomes, J. A.; Oliveira, R. C. de; Silva, D. A. S.; Viégas, I. de J. M. Grain storage in family agriculture: main problems and ways of storage in the northeast paraense region. Research, Society and Development , v.10, e36610111835, 2021. http://dx.doi.org/10.33448/rsd-v10i1.11835
http://dx.doi.org/10.33448/rsd-v10i1.118...
; Ziegler et al., 2021Ziegler, V.; Paraginski, R. T.; Ferreira, C. D. Grain storage systems and effects of moisture, temperature and time on grain quality - A review. Journal of Stored Products Research , v.91, e101770, 2021. https://doi.org/10.1016/j.jspr.2021.101770
https://doi.org/10.1016/j.jspr.2021.1017...
). This is one of the major challenges in postharvest management of grains in Brazil, one of the world’s leading grain-producing countries (Coradi et al., 2020Coradi, P. C.; Oliveira, M. B. de; Carneiro, L. de O.; Souza, G. A. C. de; Elias, M. C.; Brackmann, A.; Teodoro, P. E. Technological and sustainable strategies for reducing losses and maintaining the quality of soybean grains in real production scale storage units. Journal of Stored Products Research , v.87, e101624, 2020. https://doi.org/10.1016/j.jspr.2020.101624
https://doi.org/10.1016/j.jspr.2020.1016...
).

Grains are living organisms and are therefore affected by the environment, which makes proper storage crucial (Bucklin et al., 2019Bucklin, R; Thompson, Sid; Montross, M.; Abdel-Hadi, A. Grain storage systems design. In: Kutz, M. Handbook of farm, dairy and food machinery. Academic Press. 2019. Cap.9, p.175-223. https://doi.org/10.1016/B978-0-12-814803-7.00009-9
https://doi.org/10.1016/B978-0-12-814803...
). Biotic and abiotic agents interact with grains, causing their deterioration (Lutz & Coradi, 2022Lutz, E.; Coradi, P. C. Applications of new technologies for monitoring and predicting grains quality stored: Sensors, internet of things, and artificial intelligence. Measurement, v.188, e110609, 2022. https://doi.org/10.1016/j.measurement.2021.110609
https://doi.org/10.1016/j.measurement.20...
; Sharma et al., 2023Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
https://doi.org/10.1201/9781003252023...
), which makes grain treatment, mainly chemical, imperative. Phosphide-based fumigants and pyrethroids and organophosphate insecticides are predominantly used (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
; Arora et al., 2021Arora, S.; Stanley, J.; Srivastava, C. Temporal dynamics of phosphine fumigation against insect pests in wheat storage. Crop Protection, v.144, e105602, 2021. https://doi.org/10.1016/j.cropro.2021.105602
https://doi.org/10.1016/j.cropro.2021.10...
). However, these treatments have been discouraged due to insect resistance and environmental and health implications (Mir et al., 2023Mir, S. A.; Mir, M. B.; Shah, M. A.; Hamdani, A. M.; Sunooj, K. V.; Phimolsiripol, Y.; Khaneghah, A. M. New prospective approaches in controlling the insect infestation in stored grains. Journal of Asia-Pacific Entomology, v.26, e102058, 2023. https://doi.org/10.1016/j.aspen.2023.102058
https://doi.org/10.1016/j.aspen.2023.102...
), leading to the search for alternative treatments.

Storage is essential for increasing profits, reducing losses, and ensuring food quality and safety (Gaban et al., 2017Gaban, A. C.; Morelli, F.; Brisola, M. V.; Guarnieri, P. Evolução da produção de grãos e armazenagem: perspectivas do agronegócio brasileiro para 2024/25. Informe GEPEC. v.21, p.28-47, 2017. https://doi.org/10.48075/igepec.v21i1.15407
https://doi.org/10.48075/igepec.v21i1.15...
; Cafiero & Nord, 2018Cafiero, C.; Viviani, S.; Nord, M. Food security measurement in a global context: The food insecurity experience scale. Measurement, v.116, p.146-152, 2018. https://doi.org/10.1016/j.measurement.2017.10.065
https://doi.org/10.1016/j.measurement.20...
). However, the highest postharvest grain losses usually occur during storage, a situation that is even more significant for small-scale growers due to financial and technological limitations (Manandhar et al., 2018Manandhar, A.; Milindi, P.; Shah, A. An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture, v.8, e57, 2018. https://doi.org/10.3390/agriculture8040057
https://doi.org/10.3390/agriculture80400...
).

Therefore, information about the storage ecosystem and the development of new techniques, especially sustainable ones, are essential to optimize the process and ensure profitability, nutritional quality, and food safety (Ariong et al., 2023Ariong, R. M.; Okello, D. M.; Otim, M. H.; Paparu, P. The cost of inadequate postharvest management of pulse grain: Farmer losses due to handling and storage practices in Uganda. Agriculture & Food Security, v.12, p.1-22, 2023. https://doi.org/10.1186/s40066-023-00423-7
https://doi.org/10.1186/s40066-023-00423...
; Tushar et al., 2023Tushar, S. R; Alam, Md. F. B.; Zaman, S. Md.; Garza-Reyes, J. A; Bari, A. B. M. M; Karmaker, C. L. Analysis of the factors influencing the stability of stored grains: Implications for agricultural sustainability and food security. Sustainable Operations and Computers, v.4, p.40-52, 2023. https://doi.org/10.1016/j.susoc.2023.04.003
https://doi.org/10.1016/j.susoc.2023.04....
). In this context, the objective aim of this review was to discuss a sustainable strategy for treating stored grains, focusing on the use of natural compounds with bioactive properties, such as antifungal, antioxidant, and insecticidal activities, with potential for further study.

Challenges in Grain Storage: An Overview

Losses of stored grains result from biotic factors, such as harmful insects, microorganisms, rodents, and birds, and abiotic factors, including grain moisture content, relative air humidity, temperature, grain condition at harvest, and storage conditions and facilities (Sharma et al., 2023Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
https://doi.org/10.1201/9781003252023...
).

Insect pests account for a significant portion of both quantitative and qualitative losses in stored grains (Rizwan et al., 2022Rizwan, M.; Atta, B.; Ali, M. Y.; Ashraf, I.; Arshad, M.; Tahir, M.; Rizwan, M.; Sabir, A. M.; Shehzadi, N.; Khalid, U. B.; Iqbal, S.; Pan, M-Z.; Liu, T-X. The comparison of interstitial relative humidity and temperatures of hermetic and polypropylene bag for wheat grain storage under different agro-climatic conditions of rice-wheat ecosystem of Pakistan: Effect on seed quality and protection against insect pests. Journal of Stored Products Research , v.96, e101936, 2022. https://doi.org/10.1016/j.jspr.2022.101936
https://doi.org/10.1016/j.jspr.2022.1019...
), as they thrive under high humidity and temperature conditions (Garcia-Cela et al., 2019Garcia-Cela, E.; Kiaitsi, E.; Sulyok, M.; Krska, R.; Medina, A.; Damico, I. P.; Magan, N. Influence of storage environment on maize grain: CO2 production, dry matter losses and aflatoxins contamination. Food Additives & Contaminants, v.36, p.175-185, 2019. https://doi.org/10.1080/19440049.2018.1556403
https://doi.org/10.1080/19440049.2018.15...
). Infestation by insect pests occurs initially through primary infestation, with insects penetrating, feeding, and completing their lifecycle within healthy grains; this enables secondary infestation, characterized by insects feeding on previously damaged or broken grains (Melo et al., 2018Melo, A. L. de; Silva, S. B.; Albuquerque, J. Armazenamento, proteção de grãos e controle orgânico em pequenas propriedades. Belém: Edufra, 2018. 62p.).

Pest damage includes quantitative losses such as gran weight reduction, and qualitative losses such as changes in chemical composition that affect grain nutritional value, contamination with excreta, insect parts, and uric acid, and aesthetic degradation (Covele et al., 2020Covele, G.; Gulube, A.; Tivana, L.; Ribeiro-Barros, A. I.; Carvalho, M. O.; Ndayiragije, A.; Nguenha, R. Effectiveness of hermetic containers in controlling paddy rice (Oryza sativa L.) storage insect pests. Journal of Stored Products Research , v.89, e101710, 2020. https://doi.org/10.1016/j.jspr.2020.101710
https://doi.org/10.1016/j.jspr.2020.1017...
; Paul et al., 2020Paul, A.; Radhakrishnan, M.; Anandakumar, S.; Shanmugasundaram, S.; Anandharamakrishnan, C. Disinfestation techniques for major cereals: A status report. Comprehensive Reviews in Food Science and Food Safety, v.19, p.1125-1155, 2020. https://doi.org/10.1111/1541-4337.12555
https://doi.org/10.1111/1541-4337.12555...
; Sharma et al., 2023Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
https://doi.org/10.1201/9781003252023...
). Additionally, insect infestations can compromise the germination of stored grains (Mng’ong’o, 2023Mng’ong’o, M. Assessment of maize and beans storage insect pest in major grain markets, Morogoro-Tanzania. Saudi Journal of Biological Sciences, v.30, e103491, 2023. https://doi.org/10.1016/j.sjbs.2022.103491
https://doi.org/10.1016/j.sjbs.2022.1034...
). Although grains are not typically used as planting inputs, these factors are significant in small-scale and family farms, where grains are often used as seeds.

Moreover, insect infestations can promote pathogenic microorganisms by creating entry points for colonization, increasing the grain temperature and damaging storage facility structures and packaging (Sharma et al., 2023Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
https://doi.org/10.1201/9781003252023...
). Thus, the presence of insects in stored grains, especially at high infestation levels, compromises profitability and food safety.

The main insect pests of stored grains include: i) Primary pests, such as Rhyzopertha dominica (Coleoptera: Bostrichidae), Sitophilus oryzae (Coleoptera: Curculionidae), Sitophilus zeamais (Coleoptera: Curculionidae), Lasioderma serricorne (Coleoptera: Anobiidae), Acanthoscelides obtectus (Coleoptera: Bruchidae), Sitotroga cerealella (Lepidoptera: Gelechiidae), and Plodia interpunctella (Lepidoptera: Pyralidae); and ii) Secondary pests, such as Tribolium castaneum (Coleoptera: Tenebrionidae), Oryzaephilus surinamensis (Coleoptera: Silvanidae), Cryptolestes ferrugineus (Coleoptera: Cucujidae), and Ephestia kuehniella (Lepidoptera: Pyralidae) (Lorini et al., 2015Lorini, I.; Krzyzanowski, F. C.; França-Neto, J. B.; Henning, A. A.; Henning, F. A. Manejo integrado de pragas de grãos e sementes armazenadas. Brasília: Embrapa, 2015. 86p.).

Furthermore, microorganisms also pose a threat to stored grains. Grains can be attacked by bacteria, actinomycetes, and fungi during storage (Iztayev et al., 2020Iztayev, A.; Baibatyrov, T.; Mukasheva, T.; Muldabekova, B.; Yakiyayeva, M. Experimental studies of the baisheshek barley grain processed by the ion-ozone mixture. Tchê Química, v.17, p.239-258, 2020. https://doi.org/10.52571/ptq.v17.n35.2020.22_iztayev_pgs_239_258.pdf
https://doi.org/10.52571/ptq.v17.n35.202...
). However, bacterial contamination in grains is uncommon during storage due to unfavorable conditions for their growth; when it does occur, it typically involves non-harmful bacteria due to poor hygiene (Briggs & McGuinness, 1993Briggs, D. E.; McGuinness, G. Microbes on barley grains. Journal of the Institute of Brewing, v.99, p.249-255, 1993. https://doi.org/10.1002/j.2050-0416.1993.tb01168.x
https://doi.org/10.1002/j.2050-0416.1993...
; Laca et al., 2006Laca, A.; Mousia, Z.; Diaz, M.; Webb, C.; Pandiella, S. S. Distribution of microbial contamination within cereal grains. Journal of Food Engineering, v.72, p.332-338, 2006. https://doi.org/10.1016/j.jfoodeng.2004.12.012
https://doi.org/10.1016/j.jfoodeng.2004....
; Los et al., 2018Los, A.; Ziuzina, D.; Bourke, P. Current and future technologies for microbiological decontamination of cereal grains. Journal of Food Science, v.83, p.1484-1493, 2018. https://doi.org/10.1111/1750-3841.14181
https://doi.org/10.1111/1750-3841.14181...
; Qi et al., 2022Qi, Z.; Tian, L.; Zhang, H.; Zhou, X.; Lei, Y.; Tang, F. Mycobiome mediates the interaction between environmental factors and mycotoxin contamination in wheat grains. Science of The Total Environment, v.928, e172494, 2024. https://doi.org/10.1016/j.scitotenv.2024.172494
https://doi.org/10.1016/j.scitotenv.2024...
). Conversely, fungi require more attention due to their harmful effects on stored products (Jafarzadeh et al., 2023Jafarzadeh, S.; Hadidi, M.; Forough, M.; Nafchi, A. M.; Khaneghah, A. M. The control of fungi and mycotoxins by food active packaging: A review. Critical Reviews in Food Science and Nutrition, v.63, p.6393-6411, 2023. https://doi.org/10.1080/10408398.2022.2031099
https://doi.org/10.1080/10408398.2022.20...
).

Fungi are favored by moisture; fungal colonization is promoted by water activity in grains above the critical threshold, causing grain deterioration and potentially leading to mycotoxin production (Fleurat-Lessard, 2017Fleurat-Lessard, F. Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins - An update. Journal of Stored Products Research , v.71, p.22-40, 2017. https://doi.org/10.1016/j.jspr.2016.10.002
https://doi.org/10.1016/j.jspr.2016.10.0...
; Wang et al., 2019Wang, L.; Liu, B.; Jin, J.; Mal, L.; Dai, X.; Pan, L.; Liu, Y.; Zhao, Y.; Xing, F. The complex essential oils highly control the toxigenic fungal microbiome and major mycotoxins during storage of maize. Frontiers in Microbiology, v.10, e1643, 2019. https://doi.org/10.3389/fmicb.2019.01643
https://doi.org/10.3389/fmicb.2019.01643...
). Mycotoxins are toxic substances produced by secondary metabolism (Chen et al., 2023Chen, Y.; Xing, M.; Chen, T.; Tian, S.; Li, B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chemistry , v.415, e135787, 2023. https://doi.org/10.1016/j.foodchem.2023.135787
https://doi.org/10.1016/j.foodchem.2023....
) and seriously threaten food safety due to their high likelihood of causing acute contaminations (El-Sayed et al., 2022El-Sayed, R. A.; Jebur, A. B.; Kang, W.; El-Demerdash, F. M. An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, v.2, p.91-102, 2022. https://doi.org/10.1016/j.jfutfo.2022.03.002
https://doi.org/10.1016/j.jfutfo.2022.03...
). The main fungi species in stored belong to the genera Aspergillus, Fusarium, Cladosporium, Ustilaginoidea, and Wallemia (Qi et al., 2022Qi, Z.; Tian, L.; Zhang, H.; Zhou, X.; Lei, Y.; Tang, F. Mycobiome mediates the interaction between environmental factors and mycotoxin contamination in wheat grains. Science of The Total Environment, v.928, e172494, 2024. https://doi.org/10.1016/j.scitotenv.2024.172494
https://doi.org/10.1016/j.scitotenv.2024...
); Fusarium and Aspergillus species are the major mycotoxin producers (Bertuzzi et al., 2019Bertuzzi, T.; Romano, M.; Rastelli, S.; Giorni, P. Mycotoxins and related fungi in Italian paddy rice during the growing season and storage. Toxins, v.11, e151, 2019. https://doi.org/10.3390/toxins11030151
https://doi.org/10.3390/toxins11030151...
; Araújo et al., 2021Araújo, R. I.; Freire, C.; Cruz, S.; Peters, L. P.; Ferreira, J. Identificação de isolados de Fusarium encontrados em grãos de milho durante o armazenamento em silos no estado do Acre. Enciclopédia Biosfera, v.18, p.132-146, 2021. https://doi.org/10.18677/EnciBio_2021D30
https://doi.org/10.18677/EnciBio_2021D30...
).

Therefore, the primary issue caused by fungi in grain storage is their ability to produce mycotoxins, which represent a serious health risk due to their high toxicity even at low concentrations (Gil-Serna et al., 2019Gil-Serna, J.; García-Díaz, M.; Vázquez, C.; González-Jaén, M. T.; Patiño, B. Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins. Food Microbiology, v.82, p.240-248, 2019. https://doi.org/10.1016/j.fm.2019.02.013
https://doi.org/10.1016/j.fm.2019.02.013...
; Gallo et al., 2020Gallo, A.; Ghilardelli, F.; Doupovec, B.; Faas, J.; Schatzmayr, D.; Masoero, F. Kinetics of gas production in the presence of Fusarium mycotoxins in rumen fluid of lactating dairy cows. JDS Communications, v.2, p.243-247, 2021. https://doi.org/10.3168/jdsc.2021-0100
https://doi.org/10.3168/jdsc.2021-0100...
; Qi et al., 2024Qi, Z.; Tian, L.; Zhang, H.; Zhou, X.; Lei, Y.; Tang, F. Mycobiome mediates the interaction between environmental factors and mycotoxin contamination in wheat grains. Science of The Total Environment, v.928, e172494, 2024. https://doi.org/10.1016/j.scitotenv.2024.172494
https://doi.org/10.1016/j.scitotenv.2024...
). Mycotoxin toxicity can cause severe effects on human and animal health, including liver toxicity, carcinogenicity, immunosuppression, neurotoxicity, reduced fertility, endocrine disorders, gastrointestinal illnesses, and developmental issues (Dai et al., 2019Dai, C.; Xiao, X.; Sun, F; Zhang, Y.; Hoyer, D.; Shen, J.; Tang, S.; Velkov, T. T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Archives of Toxicology, v.93, p.3041-3056, 2019. https://doi.org/10.1007/s00204-019-02577-5
https://doi.org/10.1007/s00204-019-02577...
; Gallo et al., 2020Gallo, A.; Ghilardelli, F.; Doupovec, B.; Faas, J.; Schatzmayr, D.; Masoero, F. Kinetics of gas production in the presence of Fusarium mycotoxins in rumen fluid of lactating dairy cows. JDS Communications, v.2, p.243-247, 2021. https://doi.org/10.3168/jdsc.2021-0100
https://doi.org/10.3168/jdsc.2021-0100...
; Sun et al., 2022Sun, Y.; Huang, K.; Long, M.; Yang, S.; Zhang, Y. An update on immunotoxicity and mechanisms of action of six environmental mycotoxins. Food and Chemical Toxicology, v.163, e112895, 2022. https://doi.org/10.1016/j.fct.2022.112895
https://doi.org/10.1016/j.fct.2022.11289...
; Penagos-Tabare et al., 2024Penagos-Tabares, F.; Khiaosa-ard, R.; Faas, J.; Papst, F.; Egger-Danner, C.; Zebeli, Q. A 2-year study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds. Journal of Dairy Science, v.107, p.1124-1142, 2024. https://doi.org/10.3168/jds.2023-23476
https://doi.org/10.3168/jds.2023-23476...
; Taroncher et al., 2024Taroncher, M.; Fuentes, C.; Rodríguez-Carrasco, Y.; Ruiz, M.-J. Assessment of the genotoxic and mutagenic effects induced by T-2 mycotoxin in HepG2 cells. Toxicology, v.501, e153712, 2024. https://doi.org/10.1016/j.tox.2023.153712
https://doi.org/10.1016/j.tox.2023.15371...
).

The most significant mycotoxins for the agricultural sector are aflatoxins, produced by species of the genus Aspergillus; fumonisins, trichothecenes, zearalenone, by species of Fusarium; ochratoxins and citrinin, by species of Aspergillus and Penicillium; and patulin, by species of Penicillium (Munkvold et al., 2021Munkvold, G. P.; Proctor, R. H.; Moretti, A. Mycotoxin production in fusarium according to contemporary species concepts. Annual Review of Phytopathology, v.59, p.373-402, 2021. https://doi.org/10.1146/annurev-phyto-020620-102825
https://doi.org/10.1146/annurev-phyto-02...
; Ferrara et al., 2022Ferrara, M.; Perrone, G.; Gallo, A. Recent advances in biosynthesis and regulatory mechanisms of principal mycotoxins. Current Opinion in Food Science, v.48, e100923, 2022. https://doi.org/10.1016/j.cofs.2022.100923
https://doi.org/10.1016/j.cofs.2022.1009...
).

Birds and rodents also cause damage stored grains, albeit to a lesser extent (Shah et al., 2023Shah, M. A.; Manj, I. A.; Naseer, J.; Anjum, K.; Hafeez, S.; Ahmad, H. M.; Faridi, T. Padrões de danos de diferentes aves e espécies de roedores em armazenamentos de grãos em Bahawalpur, Paquistão. Revista de Ciências Agrícolas, v.5, p.28-37, 2023. https://doi.org/10.56520/asj.v5i2.270
https://doi.org/10.56520/asj.v5i2.270...
). These organisms contribute to grain storage losses by consuming grains; however, their greater concern threat lies in transmitting diseases to humans and animals as carriers of various pathogens that contaminate the grain mass through their excreta and feathers, thus promoting the growth of insects and microbes (Rajendran et al., 2003Rajendran, S. Grain storage: perspectives and problems. In: Chakraverty, A.; Mujumdar, A. S.; Raghavan G. S. V. Handbook of postharvest technology. CRC Press. 2003. Cap.8, p.183-214. ; Dubey et al., 2023Dubey, V. K.; Mandal, S. K.; Chowdhury, S. Insight into management of rodents in storage grain. Just Agriculture, v.3, p.609-615, 2023. https://doi.org/10.13140/RG.2.2.35345.92005
https://doi.org/10.13140/RG.2.2.35345.92...
; Quasim et al., 2023Quasim, M. A.; Karn, A. K.; Paul, S.; Hmar, E. B. L.; Sharma, H. K. Herbal rodent repellent: A dependable and dynamic approach in defiance of synthetic repellent. Bulletin of the National Research Centre, v.47, e82, 2023. https://doi.org/10.1186/s42269-023-01055-4
https://doi.org/10.1186/s42269-023-01055...
).

Regarding abiotic factors, grain moisture content is one of the main causes of damage to stored grains (Abdullahi & Dandago, 2021Abdullahi, N.; Dandago, M. A. Postharvest losses in food grains - A Review. Turkish Journal of Food and Agriculture Sciences, v.3, p.25-36, 2021. https://doi.org/10.53663/turjfas.958473
https://doi.org/10.53663/turjfas.958473...
). The safe moisture content range for stored grains usually range from 10 to 13%, with higher and lower levels leading to deterioration of inherent grain properties, such as changes in chemical and physical composition, favoring pest and microorganism attacks (Panigrahi et al., 2020Panigrahi, S.S.; Singh, C.B.; Fielke, J.; Zare, D. Modeling of heat and mass transfer within the grain storage ecosystem using numerical methods: A review. Drying Technology, v.38, p.1677-1697, 2020. https://doi.org/10.1080/07373937.2019.1656643
https://doi.org/10.1080/07373937.2019.16...
; Sharma et al., 2023Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
https://doi.org/10.1201/9781003252023...
). Additionally, relative air humidity can cause damage through water absorption or loss due to the hygroscopic nature of grains (Angelovic et al., 2018Angelovic, M.; Krištof, K.; Jobbágy, J.; Findura, P.; Križan, M. The effect of conditions and storage time on course of moisture and temperature of maize grains. BIO Web of Conferences, v.10, p.1-6. 2018. https://doi.org/10.1051/bioconf/20181002001
https://doi.org/10.1051/bioconf/20181002...
).

Water is a precursor for metabolic reactions; therefore, high moisture contents accelerate metabolism, increase the consumption of grain reserves, and decrease the grain nutritional value (Yubonmhat et al., 2019Yubonmhat, K.; Chinwong, S.; Nattawoot, M.; Saowadee, N.; Youngdee, W. Cellular water and proton relaxation times of Thai rice kernels during grain development and storage. Journal of Cereal Science, v.88, p.65-70, 2019. https://doi.org/10.1016/j.jcs.2019.05.005
https://doi.org/10.1016/j.jcs.2019.05.00...
; Wang et al. 2020Wang, Q.; Feng, J.; Han, F.; Wu, W.; Gao, S. Analysis and prediction of grain temperature from air temperature to ensure the safety of grain storage. International Journal of Food Properties, v.23, p.1200-1213, 2020. https://doi.org/10.1080/10942912.2020.1792922
https://doi.org/10.1080/10942912.2020.17...
), as well as favor insect attacks and mainly fungal growth (Garcia-cela et al., 2019Garcia-Cela, E.; Kiaitsi, E.; Sulyok, M.; Krska, R.; Medina, A.; Damico, I. P.; Magan, N. Influence of storage environment on maize grain: CO2 production, dry matter losses and aflatoxins contamination. Food Additives & Contaminants, v.36, p.175-185, 2019. https://doi.org/10.1080/19440049.2018.1556403
https://doi.org/10.1080/19440049.2018.15...
; Sharma et al., 2023Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
https://doi.org/10.1201/9781003252023...
). Conversely, low moisture contents lead to reduced commercial value due to lower grain weight and can potentially cause physical damage due to grain dryness (Souza & Ruffato, 2021Souza, I. P.; Ruffato, S. Cinética de secagem e qualidade de grãos de milho secados naturalmente. Research, Society and Development , v.10, e44010817334, 2021. http://dx.doi.org/10.33448/rsd-v10i8.17334
http://dx.doi.org/10.33448/rsd-v10i8.173...
).

Air and grain temperatures, as well as the temperature between grains, are also significant for the quality of stored grains (Sharma et al., 2023Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
https://doi.org/10.1201/9781003252023...
). High temperatures accelerate grain metabolism, leading to the consumption of reserves, favoring insect-pest infestation and microbial growth, and causing nutrient degradation (Elias, 2000Elias, M. C. Secagem e armazenamento de grãos de milho e de sorgo na propriedade rural. In: Parfitt, J. M. B. Produção de milho e sorgo em várzea. Pelotas: Embrapa Clima Temperado. 2000. Cap.12, p.107-146.; Garcia-cela et al., 2019Garcia-Cela, E.; Kiaitsi, E.; Sulyok, M.; Krska, R.; Medina, A.; Damico, I. P.; Magan, N. Influence of storage environment on maize grain: CO2 production, dry matter losses and aflatoxins contamination. Food Additives & Contaminants, v.36, p.175-185, 2019. https://doi.org/10.1080/19440049.2018.1556403
https://doi.org/10.1080/19440049.2018.15...
; Gu et al., 2019Gu, F.; Gong, B.; Gilbert, R. G.; Yu, W.; Li, E.; Li, C. Relations between changes in starch molecular fine structure and in thermal properties during rice grain storage. Food Chemistry , v.295, p.484-492, 2019. https://doi.org/10.1016/j.foodchem.2019.05.168
https://doi.org/10.1016/j.foodchem.2019....
). These stressors increase grain respiration, generating metabolic heat due to oxidative decomposition, thus causing further losses (Sharma et al., 2023Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
https://doi.org/10.1201/9781003252023...
).

Furthermore, grain conditions at harvest and the storage conditions and facilities also affect the quality of stored grains. Intact grains harvested and stored at ideal moisture contents are less susceptible to damage from these factors; proper mechanical and structural storage conditions, with durable facilities, reduce access to harmful insects and microorganisms and minimize grain deterioration (Abdullahi & Dandago, 2021Abdullahi, N.; Dandago, M. A. Postharvest losses in food grains - A Review. Turkish Journal of Food and Agriculture Sciences, v.3, p.25-36, 2021. https://doi.org/10.53663/turjfas.958473
https://doi.org/10.53663/turjfas.958473...
; Sharma et al., 2023Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
https://doi.org/10.1201/9781003252023...
). Additionally, sanitation and hygiene conditions around storage areas are crucial, as poor hygiene predispose the grains to more harmful effects (Kuyu et al., 2022Kuyu, C. G.; Tola, Y. B.; Mohammed, A.; Mengesh, A.; Mpagalile, J. J. Evaluation of different grain storage technologies against storage insect pests over an extended storage time. Journal of Stored Products Research , v.96, e101945, 2022. https://doi.org/10.1016/j.jspr.2022.101945
https://doi.org/10.1016/j.jspr.2022.1019...
).

Use of Natural Compounds: Alternative to Conventional Treatments of Stored Grains

Chemical treatments are the most used method for grain storage, applied preventively in empty spaces before storage or curatively, using insecticides and fumigants (Lorini et al., 2015Lorini, I.; Krzyzanowski, F. C.; França-Neto, J. B.; Henning, A. A.; Henning, F. A. Manejo integrado de pragas de grãos e sementes armazenadas. Brasília: Embrapa, 2015. 86p.; Manandhar et al., 2018Manandhar, A.; Milindi, P.; Shah, A. An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture, v.8, e57, 2018. https://doi.org/10.3390/agriculture8040057
https://doi.org/10.3390/agriculture80400...
; Hamel et al., 2020Hamel, D.; Rozman, V.; Liška, A. Storage of cereals in warehouses with or without Pesticides. Insects, v.11, e846, 2020. https://doi.org/10.3390/insects11120846
https://doi.org/10.3390/insects11120846...
). Preventive treatments protect the grains for several months by uniformly applying chemical insecticides before storing the grains (Lorini et al., 2015Lorini, I.; Krzyzanowski, F. C.; França-Neto, J. B.; Henning, A. A.; Henning, F. A. Manejo integrado de pragas de grãos e sementes armazenadas. Brasília: Embrapa, 2015. 86p.; Hamel et al., 2020Hamel, D.; Rozman, V.; Liška, A. Storage of cereals in warehouses with or without Pesticides. Insects, v.11, e846, 2020. https://doi.org/10.3390/insects11120846
https://doi.org/10.3390/insects11120846...
). Curative treatments involve fumigation to eliminate infestations in stored grains (Abdullahi & Dandago, 2021Abdullahi, N.; Dandago, M. A. Postharvest losses in food grains - A Review. Turkish Journal of Food and Agriculture Sciences, v.3, p.25-36, 2021. https://doi.org/10.53663/turjfas.958473
https://doi.org/10.53663/turjfas.958473...
).

Preventive application of chemical insecticides has a limited efficacy, as the action of the product is restricted to insects on the grain surface, making fumigation more effective (Hamel et al., 2020Hamel, D.; Rozman, V.; Liška, A. Storage of cereals in warehouses with or without Pesticides. Insects, v.11, e846, 2020. https://doi.org/10.3390/insects11120846
https://doi.org/10.3390/insects11120846...
). The list of chemical pesticides approved for treating stored grains is limited, with a focus on fumigants (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
; Hamel et al., 2020Hamel, D.; Rozman, V.; Liška, A. Storage of cereals in warehouses with or without Pesticides. Insects, v.11, e846, 2020. https://doi.org/10.3390/insects11120846
https://doi.org/10.3390/insects11120846...
). Currently, the most used products for grain storage in Brazil are pyrethroids, followed by organophosphates (Table 1) (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
). Regarding fumigation, methyl bromide was largely used worldwide, but has been banned and replaced by phosphine, sulfuryl fluoride, and carbon dioxide, the latter considered more environmentally friendly (Hamel et al., 2020Hamel, D.; Rozman, V.; Liška, A. Storage of cereals in warehouses with or without Pesticides. Insects, v.11, e846, 2020. https://doi.org/10.3390/insects11120846
https://doi.org/10.3390/insects11120846...
). In Brazil, aluminum phosphide and magnesium phosphide are the most used for fumigation, followed by phosphine (Table 1) (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
).

Table 1
Approved active ingredients for use in storage of grain products in Brazil

There are currently no chemical fungicides approved for controlling fungi in grain storage in Brazil (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
). Considering the widespread occurrence of fungi in storage facilities and the significant threat of mycotoxin to health (Taroncher et al., 2024Taroncher, M.; Fuentes, C.; Rodríguez-Carrasco, Y.; Ruiz, M.-J. Assessment of the genotoxic and mutagenic effects induced by T-2 mycotoxin in HepG2 cells. Toxicology, v.501, e153712, 2024. https://doi.org/10.1016/j.tox.2023.153712
https://doi.org/10.1016/j.tox.2023.15371...
), seeking solutions, especially sustainable ones, is imperative to prevent and control the presence of these organisms in stored grains to ensure food safety.

Although highly effective, chemical treatments have drawbacks (Akinneye et al., 2018Akinneye, J. O.; Adeleye, O. A.; Adesina, F. P.; Akinyemi, M. I. Assessment of pesticide residue on cocoa beans in Ondo State, Nigeria. Brazilian Journal of Biological Sciences, v.5, p.577-588, 2018. https://doi.org/10.21472/bjbs.051031
https://doi.org/10.21472/bjbs.051031...
), including the potential for residue in food, which can be harmful to human health; environmental impact, especially when products are mishandled; the development of resistance in organisms due to excessive and continuous use of substances; strict regulations; and health risk to workers exposed to toxic products (Ayalew, 2020Ayalew, A. A. Insecticidal activity of Lantana camara extract oil on controlling maize grain weevils. Toxicology Research and Application, v.4, p.1-10, 2020. https://doi.org/10.1177/2397847320906491
https://doi.org/10.1177/2397847320906491...
; Dias et al., 2020Dias, T. F. V.; Arcanjo, L. L.; Costa, G. L.; Souza, C. S.; Lima, C. A. R. Controle de pragas e tratamento de grãos armazenados para uso em rações para animais. Research, Society and Development, v.9, e739996964, 2020. https://doi.org/10.33448/rsd-v9i9.69641
https://doi.org/10.33448/rsd-v9i9.69641...
).

Physical treatments involve the manipulation of the physical environment to control pests and pathogens, including the use of lethal temperatures that are non-damaging to grains; reduction of relative air humidity to unfavorable levels; controlled atmosphere, modifying CO2, O2, or N2 concentrations to harmful levels; use of inert dusts such as diatomaceous earth for desiccation as an insecticidal method; physical removal of pests with sieves; exposure of pests to ionizing radiation for their elimination or sterilization; application of sound waves at frequencies harmful to insects; application of radiofrequency and microwave energy for selective dielectric heating of insects to lethal temperatures; and use of hermetic packaging (Lorini et al., 2015Lorini, I.; Krzyzanowski, F. C.; França-Neto, J. B.; Henning, A. A.; Henning, F. A. Manejo integrado de pragas de grãos e sementes armazenadas. Brasília: Embrapa, 2015. 86p.; Tanguy et al., 2019Tanguy, A.; Deudon, O.; Crepon, K. Disponibilidade média de resfriamento para aeração de grãos na França nos últimos 20 anos. In: Conti, B.; Trematerra, P. editors. Anais do Livro de Resumos da 12ª Conferência do Grupo de Trabalho Proteção Integrada de Produtos Armazenados; Pisa, Itália. 3 a 6 de setembro de 2019 https://doi.org/10.3390/insects11090598
https://doi.org/10.3390/insects11090598...
; Yanagawa et al., 2020Yanagawa, A.; Tomaru, M.; Kajiwara, A.; Nakajima, H.; Quemener, E. D. L.; Steyer, J. P.; Mitani, T. Impact of 2.45 GHz Microwave irradiation on the fruit fly, Drosophila melanogaster. Insects, v.11, e598, 2020. https://doi.org/10.3390/insects11090598
https://doi.org/10.3390/insects11090598...
; Abed et al., 2023Abed, M. S.; Abdul-Nabe, R. A.; Petrescu, L.; Mihailescu, D. F. Effectiveness of microwave radiation in eliminating different insect species contaminating grain crops. Journal of Stored Products Research, v.102, e102121, 2023. https://doi.org/10.1016/j.jspr.2023.102121
https://doi.org/10.1016/j.jspr.2023.1021...
; Jian, 2024Jian, F. Lethal and mobile variation of stored product insects and mites under low temperatures. Journal of Stored Products Research , v.105, e102240, 2024. https://doi.org/10.1016/j.jspr.2023.102240
https://doi.org/10.1016/j.jspr.2023.1022...
).

The use of diatomaceous earth stands out among physical environment treatments. It has been used as an alternative to conventional insecticides and has shown effectiveness against various insect-pest species of stored grain (Baliota & Athanassiou, 2023Baliota, G. V.; Athanassiou, C. G. Evaluation of inert dusts on surface applications and factors that maximize their insecticidal efficacy. Applied Sciences, v.13, e2767, 2023. https://doi.org/10.3390/app13052767
https://doi.org/10.3390/app13052767...
). Diatomaceous earth is an inert dust derived from fossilized microscopic algae, containing 60 to 93% amorphous silica, with emphasis on silicon dioxide, which causes insect mortality through desiccation (Baliota & Athanassiou, 2020Baliota, G. V.; Athanassiou, C. G. Evaluation of a Greek diatomaceous earth for stored product insect control and techniques that maximize its insecticidal efficacy. Applied Sciences., v.10, e6441. 2020. https://doi.org/10.3390/app10186441
https://doi.org/10.3390/app10186441...
).

Some limitations are associated with physical treatments, including reduced grain quality, especially with temperatures that degrade chemical compounds, high operational costs and time, the need for large amounts of material, and limited efficacy (Souza et al., 2013Souza, W. F. de; Vargas, A. N.; Val, J. B. R. do; Freitas, A. de M. A.; Lorini, M. Control of temperature to suppress the population of Rhyzopertha dominica (F.) (Coleoptera, Bostrichidae) in a grain silo prototype. In: European Control Conference, 2013, Zurich. Proceedings. Zurich: European Control Association, p.4089-4093, 2013.; Lorini et al., 2015Lorini, I.; Krzyzanowski, F. C.; França-Neto, J. B.; Henning, A. A.; Henning, F. A. Manejo integrado de pragas de grãos e sementes armazenadas. Brasília: Embrapa, 2015. 86p.). Despite its low toxicity to mammals, efficiency, and long-term effect, diatomaceous earth has some disadvantages such as effects on the physical properties of grains, including reduced bulk density (Rigopoulou et al., 2023Rigopoulou, M.; Baliota, G. V.; Athanassiou, C. G. Persistence and efficacy of diatomaceous earth against stored product insects in semi-field trials. Crop Protection , v.174, e106416, 2023. https://doi.org/10.1016/j.cropro.2023.106416
https://doi.org/10.1016/j.cropro.2023.10...
), as well as and mechanical abrasion (Losic & Korunic, 2018Losic, D.; Korunic, Z. Diatomaceous earth, a natural insecticide for stored grain protection: recent progress and perspectives. In: Losic, D. Diatomaceous nanotechnology: progress and emerging applications. The Royal Society of Chemistry, 2018. Chapter 10, p.219-247. https://doi.org/10.1039/9781788010160-00219
https://doi.org/10.1039/9781788010160-00...
), which hinders direct mixing with grains (Hamel et al., 2020Hamel, D.; Rozman, V.; Liška, A. Storage of cereals in warehouses with or without Pesticides. Insects, v.11, e846, 2020. https://doi.org/10.3390/insects11120846
https://doi.org/10.3390/insects11120846...
).

Biological pest control in storage facilities is not yet a well-established method but has been studied as an alternative to chemical pesticides. These studies have considered the use of pathogens, parasitoids, and predators for protecting stored grains (Hamel et al., 2020Hamel, D.; Rozman, V.; Liška, A. Storage of cereals in warehouses with or without Pesticides. Insects, v.11, e846, 2020. https://doi.org/10.3390/insects11120846
https://doi.org/10.3390/insects11120846...
; Abdullahi & Dandago, 2021Abdullahi, N.; Dandago, M. A. Postharvest losses in food grains - A Review. Turkish Journal of Food and Agriculture Sciences, v.3, p.25-36, 2021. https://doi.org/10.53663/turjfas.958473
https://doi.org/10.53663/turjfas.958473...
).

Biological treatments are low or non-toxic by nature, therefore, they have some limitations, mainly related to limited and variable efficacy, potential contamination of stored grains with organism fragments (Montoya-Martínez et al., 2024Montoya-Martínez, A. C.; Valenzuela Ruiz, V.; Chávez-Luzanía, R. A.; Villa-Rodríguez, E. D.; Villalobos, S. d. l. S. Biological control agents for mitigating plant diseases. In New insights, trends, and challenges in the development and applications of microbial inoculants in agriculture. Developments in Applied Microbiology and Biotechnology. 2024. Chapter 4, p.27-35. https://doi.org/10.1016/B978-0-443-18855-8.00004-7
https://doi.org/10.1016/B978-0-443-18855...
), a lack of detailed and critical analysis of their use in the field against specific insect pests in crops, and organizational, geographical, and methodological biases; these factors hinder the scientific progress in this area (Wyckhuys et al., 2024Wyckhuys, K. A. G.; Akutse, K. S.; Amalin, D. M.; Araj, S. E.; Barrera, G.; Beltran, M. J. B.; Ben Fekih, I. B.; Calatayud, P. A.; Cicero, L.; Cokola, M. C.; Colmenarez, Y. C.; Dessauvages, K.; Dubois, T.; Durocher-Granger, L.; Espinel, C.; Fallet, P.; Fernández-Triana, J. L.; Francis, F.; Gómez, J.; Haddi, K.; Hadi, B. A. R. Global scientific progress and shortfalls in biological control of the fall armyworm Spodoptera frugiperda. Biological Control, v.191, e105460, 2024. https://doi.org/10.1016/j.biocontrol.2024.105460
https://doi.org/10.1016/j.biocontrol.202...
).

Currently, innovative approaches for treating stored grains have emerged driven by the demand for reducing food waste. Some techniques have shown promise for treating stored grains, including ozonation for controlling atmosphere with the potential to reduce mycotoxins and microorganisms, dielectric heating, non-thermal plasma, high hydrostatic pressure, microwave energy, ultraviolet light, and the use of natural compounds, especially essential oils (Schmidt et al., 2018Schmidt, M.; Zannini, E.; Arendt, E.K. Recent advances in physical post-harvest treatments for shelf-life extension of cereal crops. Foods, v.7, e45, 2018. https://doi.org/10.3390/foods7040045
https://doi.org/10.3390/foods7040045...
; Dias et al., 2020Dias, T. F. V.; Arcanjo, L. L.; Costa, G. L.; Souza, C. S.; Lima, C. A. R. Controle de pragas e tratamento de grãos armazenados para uso em rações para animais. Research, Society and Development, v.9, e739996964, 2020. https://doi.org/10.33448/rsd-v9i9.69641
https://doi.org/10.33448/rsd-v9i9.69641...
; Paul et al., 2020Paul, A.; Radhakrishnan, M.; Anandakumar, S.; Shanmugasundaram, S.; Anandharamakrishnan, C. Disinfestation techniques for major cereals: A status report. Comprehensive Reviews in Food Science and Food Safety, v.19, p.1125-1155, 2020. https://doi.org/10.1111/1541-4337.12555
https://doi.org/10.1111/1541-4337.12555...
). The use of natural compounds has stood out among these techniques for their low-cost and easy availability.

Traditional treatment methods, such as the use of chemical agents, show efficacy but have disadvantages like environmental persistence, adverse effects on human and animal health and the environment, impacts on the nutritional quality of grains, development of resistance, and commercial limitations due to restrictions and regulations on synthetic compounds (Subramanyam et al., 1998Subramanyam, B.; Madamanchi, N.; Norwood, S. Effectiveness of insecto applied to shelled maize against stored-product insect larvae. Journal of Economic Entomology , v.91, p.280-286, 1998. https://doi.org/10.1093/jee/91.1.280
https://doi.org/10.1093/jee/91.1.280...
; Morrison et al., 2019Morrison, W. R.; Larson, N. L.; Brabec, D.; Zhang, A. Methyl benzoate as a putative alternative, environmentally friendly fumigant for the control of stored product insects. Journal of Economic Entomology, v.112, p.2458-2468, 2019. https://doi.org/10.1093/jee/toz179
https://doi.org/10.1093/jee/toz179...
; Singh et al., 2021Singh, K. D.; Mobolade, A. J.; Bharali, R.; Sahoo, D.; Rajashekar, Y. Main plant volatiles as stored grain pest management approach: A review. Journal of Agriculture and Food Research, v.4, e100127, 2021. https://doi.org/10.1016/j.jafr.2021.100127
https://doi.org/10.1016/j.jafr.2021.1001...
; Sruthi & Rao, 2021Sruthi, N. U.; Rao, P. S. Effect of processing on storage stability of millet flour: A review. Trends in Food Science & Technology, v.112, p.58-74, 2021. https://doi.org/10.1016/j.tifs.2021.03.043
https://doi.org/10.1016/j.tifs.2021.03.0...
). These drawbacks drive the search for sustainable alternatives.

In this context, natural compounds provide a wide range of biological activities with the potential to replace traditional treatments. These substances are derived from secondary metabolism of organic sources, primarily plants, but also from animals and microorganisms, and exhibit several pharmacological and medicinal bioactivities (Bouyahya et al., 2022Bouyahya, A.; Guaouguaou, F-E.; Omari, N. E.; Menyiy, N. E.; Balahbib, A.; El-Shazly, M.; Bakri, Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. Journal of Pharmaceutical Analysis, v.12, p.35-57, 2022. https://doi.org/10.1016/j.jpha.2021.07.004
https://doi.org/10.1016/j.jpha.2021.07.0...
). Their potential agricultural applications include antioxidant, insecticidal, antimicrobial, and nutraceutical activities.

Research into natural compounds for agricultural use, particularly in grain storage, is promising as these substances can potentially replace synthetic inputs. Their advantages include easy acquisition at low cost due to a wide availability, absence of residues, and safety due to low toxicity (Sánchez & Aznar, 2015Sánchez, G.; Aznar, R. Evaluation of natural compounds of plant origin for inactivation of enteric viroses. Food and Environmental Virology, v.7, p.183-187, 2015. https://doi.org/10.1007/s12560-015-9181-9
https://doi.org/10.1007/s12560-015-9181-...
; Ooi et al., 2018Ooi, B. K.; Chan, K. G.; Goh, B. H.; Yap, W. H. The role of natural products in targeting cardiovascular diseases via nrf2 pathway: novel molecular mechanisms and therapeutic approaches. Frontiers in Pharmacology, v.15, e1308, 2018. https://doi.org/10.3389/fphar.2018.01308
https://doi.org/10.3389/fphar.2018.01308...
; Atanasov et al., 2021Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, v.20, p.200-216, 2021. https://doi.org/10.1038/s41573-020-00114-z
https://doi.org/10.1038/s41573-020-00114...
).

Considering the importance of preserving postharvest products, the search for natural compounds for treating stored grains is essential for reducing the use of chemical pesticides and, consequently, their environmental and health impacts. Therefore, there is a growing need for studies involving medicinal, aromatic, and forest species to promote the sustainable use of natural resources and their agricultural application.

Potential Natural Compounds

Natural compounds were selected for investigation based on their relevance for the protection and treatment of stored grains, mainly due to their bioactive properties. These compounds have potential against major storage issues such as fungal and insect attacks and promote grain preservation by delaying oxidation and preventing deterioration. Essential oils have well-documented antimicrobial and antioxidant properties, including applications in agriculture. Phenolic compounds are recognized for their high antioxidant and antimicrobial activities. Alkaloids have antimicrobial and insecticidal properties, whereas sulfur compounds have antioxidant, antifungal, and insecticidal activities. Carotenoids and natural polysaccharides were addressed due to their antioxidant properties.

A search for scientific articles using the term “bioactive natural compounds” in the Web of Science database, filtered by “entomology,” “mycology,” and “agronomy”, returned a total of 973 studies conducted between 1976 and 2023, with 861 articles and 112 are review articles; there was a noticeable increase from 2020 onwards (Figure 1).

Figure 1
Studies on bioactive natural compounds from 1976 to 2023 in the Web of Science database

Importantly, the extensive search for bioactive natural compounds can be attributed to their beneficial properties for grain storage, which makes them as potential options for integration into pest and disease control during storage.

Essential oils are substances extracted from plants with a significant relevance in agricultural research due to their biochemical properties, which confer important biological functions (Elshafie et al., 2019Elshafie, H. S.; Gruľová, D.; Baranová, B.; Caputo, L.; De Martino, L.; Sedlák, V.; Camele, I.; De Feo, V. Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis l. growing wild in Slovakia. Molecules, v.24, e1206, 2019. https://doi.org/10.3390/molecules24071206
https://doi.org/10.3390/molecules2407120...
). Essential oils consist of a various volatile compounds derived from secondary metabolism, such as terpenes, the major compounds, along with those of aromatic and aliphatic groups, such as aldehydes, alcohols, esters, and ketones; these compounds have characteristic aromas that provide insecticidal, antimicrobial, herbivory-protective, and repellent properties (Langenheim, 1994Langenheim, J. H. Higher plant terpenoids: a phytocentric overview of their ecological roles. Journal of Chemical Ecology, v.20, p.1223-1280, 1994. https://doi.org/10.1007/BF02059809
https://doi.org/10.1007/BF02059809...
; Tohidi et al., 2019Tohidi, B.; Rahimmalek, M.; Trindade, H. Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Industrial Crops and Products , v.134, p.89-99, 2019. https://doi.org/10.1016/j.indcrop.2019.02.038
https://doi.org/10.1016/j.indcrop.2019.0...
; Falleh et al., 2020Falleh, H.; Jemaa, M. B.; Saada, M.; Ksouri, R. Essential oils: A promising ecofriendly food preservative. Food Chemistry , v.330, e127268, 2020. https://doi.org/10.1016/j.foodchem.2020.127268
https://doi.org/10.1016/j.foodchem.2020....
).

Essential oils are synthetized in small quantities in various plant organs, mainly flowers, buds, leaves, seeds, stems, and fruits (Dhifi et al., 2016Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A Critical Review. Medicines, v.3, p.25, 2016. https://doi.org/10.3390/medicines3040025
https://doi.org/10.3390/medicines3040025...
). Extraction methods include conventional techniques such as hydrodistillation, steam distillation, hydrodiffusion, and solvent extraction (Wang et al., 2017Wang, H.; Yih, K.; Yang, C.; Huang, K. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils. Journal of Food and Drug Analysis, v.25, p.881-889, 2017. https://doi.org/10.1016/j.jfda.2017.05.007.
https://doi.org/10.1016/j.jfda.2017.05.0...
), as well as innovative methods such as supercritical fluid extraction, subcritical extraction, solvent-free microwave extraction, and microwave-assisted hydrodistillation (Aziz et al., 2018Aziz, Z.; Ahmad, A.; Setapar, S.; Karakucuk, A.; Azim, M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.; Ashraf, G. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - A review. Current Drug Metabolism, v.19, p.1100-1110, 2018. https://doi.org/10.2174/1389200219666180723144850
https://doi.org/10.2174/1389200219666180...
). These processes result in a liquid, volatile, translucent, colored product with a lower density than water (Nazzaro et al., 2017Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V. D. Essential oils and antifungal activity. Pharmaceuticals, v.10, e86, 2017. https://doi.org/10.3390/ph10040086
https://doi.org/10.3390/ph10040086...
). Several studies have confirmed the potential of essential oils for agricultural applications, emphasizing their effectiveness as bioinsecticides, biological antibiotics, and natural antioxidants (Borotová et al., 2021Borotová, P.; Galovičová, L.; Valková, V.; Ďúranová, H.; Vuković, N.; Vukić, M.; Babošová, M.; Kačániová, M. Biological activity of essential oil from Foeniculum vulgare. Acta Horticulturae et Regiotecturae, v.24, p.148-152, 2021. https://doi.org/10.2478/ahr-2021-0037
https://doi.org/10.2478/ahr-2021-0037...
; Loi et al., 2023Loi, N. V.; Binh, P. T.; Thanh, K. T.; Ngoc, N. T. T. Study to determine the chemical constituents, antibacterial ability, and antioxidant activity of the red pepper (Piper Nigrum l.) essential oil in Gia Lai Province, Vietnam. Food Science and Technology , v.43, e28723, 2023. https://doi.org/10.5327/fst.28723
https://doi.org/10.5327/fst.28723...
; Santos et al., 2023Santos, N. C.; Silva, J. E.; Santos, A. C. C.; Dantas J. O.; Tavares, S. R. S. A.; Andrade, V. S.; Oliveira, S. D. D. S.; Blank, A. F.; Araújo, A. P. A; Bacci, L. Bioactivity of essential oils from Croton grewioides and its major compounds: Toxicity to soybean looper Chrysodeixis includens and selectivity to the predatory stink bug Podisus nigrispinus. Environmental Science and Pollution Research International, v.30, p.18798-18809, 2023. https://doi.org/10.1007/s11356-022-23414-w
https://doi.org/10.1007/s11356-022-23414...
). Additionally, using essential oils in stored products provides the advantage of preserving sensory characteristics (Borotová et al., 2021Borotová, P.; Galovičová, L.; Valková, V.; Ďúranová, H.; Vuković, N.; Vukić, M.; Babošová, M.; Kačániová, M. Biological activity of essential oil from Foeniculum vulgare. Acta Horticulturae et Regiotecturae, v.24, p.148-152, 2021. https://doi.org/10.2478/ahr-2021-0037
https://doi.org/10.2478/ahr-2021-0037...
).

Currently, research on essential oils is extensive among various authors, including Brazilian researchers investigating their potential as agents to control important storage pests and fungi, including Callosobruchus chinensis, Callosobruchus musculatus, Lasioderma serricorne, Tribolium castaneum, Ephestia kuehniella, Caryedon serratus, and fungal species of the genera Fusarium, Aspergillus, and Penicillium (Mattos et al., 2021Mattos, A. P. M. N.; Krewer, A. M. A.; Eccel, C; Will, J. Uso de óleos essenciais para o controle de pragas do milho. Estrabão, v,2, p.139-147, 2021. https://doi.org/10.53455/re.v2i.17
https://doi.org/10.53455/re.v2i.17...
; Olinto et al., 2021Olinto, F. A.; Oliveira, V. S.; Nunes, M. S.; Silva, H. F.; Porcino, M. M.; Nascimento, L. C. Óleos essenciais no tratamento de sementes florestais nativas do semiárido brasileiro. Revista Principia, v.60, p.610-633, 2023. http://dx.doi.org/10.18265/1517-0306a2021id6299
http://dx.doi.org/10.18265/1517-0306a202...
; Jiang et al., 2022Jiang, H.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Chemical composition of essential oils from leaf and bud of clove and their impact on the antifungal and mycotoxin inhibitory activities of clove oil-in-water nanoemulsions. Industrial Crops and Products , v.187, e115479, 2022. https://doi.org/10.1016/j.indcrop.2022.115479
https://doi.org/10.1016/j.indcrop.2022.1...
; Luchesi et al., 2022Luchesi, L. A.; Paulus, D.; Busso, C.; Frata, M. T.; Oliveira, J. B. Chemical composition, antifungal and antioxidant activity of essential oils from Baccharis dracunculifolia and Pogostemon cablin against Fusarium graminearum. Natural Product Research , v.36, p.849-852, 2022. https://doi.org/10.1080/14786419.2020.1802267
https://doi.org/10.1080/14786419.2020.18...
; Farias et al., 2023Farias, O. R. de; Cruz, J. M. F. de L.; Duarte, I. G.; Veloso, J. S.; Nascimento, L. C. Controle de fungos com óleo de eucalipto e transmissão de Fusarium sp. em sementes de Mimosa caesalpiniifolia. Pesquisa Florestal Brasileira, v.43, e202002144, p.1-9, 2023. https://doi.org/10.4336/2023.pfb.43e202002144
https://doi.org/10.4336/2023.pfb.43e2020...
; Lopes et al., 2023Lopes, S. Z. B.; Monkolski, A.; Monkolski, J. G. de F.; Siqueira, D. J. S. Influência do óleo essencial de citronela na repelência e mortalidade de Sitophilus zeamais. Scientific Electronic Archives, v.4, p.15-22, 2023. http://dx.doi.org/10.36560/16420231692
http://dx.doi.org/10.36560/16420231692...
; Duan et al., 2024Duan, W.-Y.; Zhu, X.-M.; Zhang, S.-B.; Lv, Y.-Y.; Zhai, H.-C.; Wei, S.; Ma, P.-A.; Hu, Y.-S. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. International Journal of Food Microbiology, v.410, e110514, 2024. https://doi.org/10.1016/j.ijfoodmicro.2023.110514
https://doi.org/10.1016/j.ijfoodmicro.20...
; Gao et al., 2024Gao, Q.; Qi, J.; Tan, Y.; Ju, J. Antifungal mechanism of Angelica sinensis essential oil against Penicillium roqueforti and its application in extending the shelf life of bread. International Journal of Food Microbiology , v.408, e110427, 2024. https://doi.org/10.1016/j.ijfoodmicro.2023.110427
https://doi.org/10.1016/j.ijfoodmicro.20...
; Liu et al., 2024Liu, J.; Deng, Y.; Zhao, Z.; Zhang, J.; Hua, J.; Luo, S. The chemical diversity of essential oils from galls of two Artemisia spp., and their insecticidal activity against the storage pest Callosobruchus chinensis. Industrial Crops and Products , v.214, e118505, 2024. https://doi.org/10.1016/j.indcrop.2024.118505
https://doi.org/10.1016/j.indcrop.2024.1...
; Hamidian et al., 2024Hamidian, M.; Salehi, A.; Naghiha, R.; Dehnavi, M. M.; Mohammadi, H.; Nejad Mirfathi, M.; Mojarab-Mahboubkar, M. Biological activity of essential oils from Ferulago angulata and Ferula assa-foetida against food-related microorganisms (antimicrobial) and Ephestia kuehniella as a storage pest (insecticidal); an in vitro and in silico study. Fitoterapia, v.175, e105937, 2024. https://doi.org/10.1016/j.fitote.2024.105937
https://doi.org/10.1016/j.fitote.2024.10...
; Oliveira et al., 2023Oliveira, R. V.; Sousa, A. H. de; Tamwing, G. da S.; Silva, M. C. da; Silva, M. C. da; Mota, B. B. Óleo essencial de Piper aduncum L.: toxicidade e sinergismo como estratégias de controle de Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae): uma revisão de literatura. Scientia Naturalis, v.5, p.925-941, 2023. https://doi.org/10.29327/269504.5.2-30
https://doi.org/10.29327/269504.5.2-30...
; Paul et al., 2024Paul, A.; Visakh, N. U.; Pathrose, B.; Mori, N.; Baeshen, R. S.; Shawer, R. Exploring the chemical characterization and insecticidal activities of Curcuma angustifolia roxb. leaf essential oils against three major stored product insects. Saudi Journal of Biological Sciences , v.31, e103986, 2024. https://doi.org/10.1016/j.sjbs.2024.103986
https://doi.org/10.1016/j.sjbs.2024.1039...
; Sulhath et al., 2024Sulhath, T. A. A.; Visakh, N. U.; Pathrose, B.; George, S. B. Investigating the insecticidal properties of essential oils extracted from wild turmeric (Curcuma aromatica salisb) leaves waste against three key stored product pests. Sustainable Chemistry and Pharmacy, v,38, e101482, 2024. https://doi.org/10.1016/j.scp.2024.101482
https://doi.org/10.1016/j.scp.2024.10148...
; Tewari et al., 2024Tewari, H.; Kasana, V. K.; Jyothi, K. N.; Tewari, G. Efficacy of essential oils from three Mentha species against postharvest groundnut pest, Caryedon serratus (Olivier) (Coleoptera: Bruchidae). Journal of Natural Pesticide Research , v.7, e100063, 2024. https://doi.org/10.1016/j.napere.2023.100063
https://doi.org/10.1016/j.napere.2023.10...
; Torre et al., 2024Torre, R.; Pereira de Medeiros, E. A. D.; Pereira, C. S. B.; Menezes, A. C. R.; Fontes, I. S.; Pereira, L. V. R.; Paiva, D. H. F.; Santos, A. M. D.; Damasceno Junior, P. C.; Souza, M. A. A. D. Protection of cowpea seeds and toxicity against cowpea weevils by the essential oils from Lippia alba (verbenaceae) and Schinus terebinthifolius (anacardiaceae). Crop Protection , v.180, e106670, 2024. https://doi.org/10.1016/j.cropro.2024.106670
https://doi.org/10.1016/j.cropro.2024.10...
).

However, despite many current studies indicating the promising use of essential oils in agriculture, there is still a demand for more research regarding standardization of methods, systematic correlations between various studies, and conduction of sensory analyses to determine effective and acceptable rates that do not compromise organoleptic characteristics of food products (Střelková et al., 2024Střelková, T.; Jurkaninová, L.; Bušinová, A.; Nový, P.; Klouček, P. Essential oils in vapour phase as antifungal agents in the cereal processing chain. Trends in Food Science & Technology , v.143, e104293, 2024. https://doi.org/10.1016/j.tifs.2023.104293
https://doi.org/10.1016/j.tifs.2023.1042...
).

Phenolic compounds are secondary metabolites synthesized by plants that act on physiological processes and defense systems (Pratyusha, 2022Pratyusha, S. Phenolic compounds in the plant development and defense: An overview. In: Hasanuzzaman, M; Nahar, K. Plant stress physiology-perspectives in agriculture. IntechOpen. 2022. Cap.7, p.125-140. https://doi.org/10.5772/intechopen.102873
https://doi.org/10.5772/intechopen.10287...
). The main sources of phenolic compounds are fruit and vegetable species, but woody vascular plants have gained prominence (Tanase et al., 2019Tanase, C.; Coșarcă, S.; Muntean, D-L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, v.24, 1182, 2019. https://doi.org/10.3390/molecules24061182
https://doi.org/10.3390/molecules2406118...
). These compounds can be extracted using conventional and unconventional solvents, negative pressure, supercritical CO2 extraction, pressurized liquid extraction, subcritical water extraction, ultrasound-assisted extraction, and membrane filtration (Barba et al., 2016Barba, F.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science and Technology, v.49, p.96-109, 2016. https://doi.org/10.1016/j.tifs.2016.01.006
https://doi.org/10.1016/j.tifs.2016.01.0...
).

Phenolic compounds have aromatic rings in their chemical structure, which enables them to execute biological functions (Pratyusha, 2022Pratyusha, S. Phenolic compounds in the plant development and defense: An overview. In: Hasanuzzaman, M; Nahar, K. Plant stress physiology-perspectives in agriculture. IntechOpen. 2022. Cap.7, p.125-140. https://doi.org/10.5772/intechopen.102873
https://doi.org/10.5772/intechopen.10287...
). They are widely recognized in industry and medicine for their antioxidant, anti-inflammatory, antimicrobial, antiatherosclerotic, antidiabetic, antiallergic, prebiotic, and antimutagenic properties (Tanase et al., 2019Tanase, C.; Coșarcă, S.; Muntean, D-L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, v.24, 1182, 2019. https://doi.org/10.3390/molecules24061182
https://doi.org/10.3390/molecules2406118...
), which are advantageous for stored grains.

Alkaloids, synthesized in plants, animals, and microorganisms, have antioxidant, antimicrobial, anticarcinogenic, and insecticidal properties (Thawabteh et al., 2019Thawabteh, A.; Juma, S.; Bader, M.; Karaman, D.; Scrano, L.; Bufo, S. A.; Karaman, R. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins, v.11, e656, 2019. https://doi.org/10.3390/toxins11110656
https://doi.org/10.3390/toxins11110656...
), making them promising for grain treatment. Chemically, alkaloids are amines that contain heterocyclic rings and nitrogen derived from amino acids (Dey et al., 2020Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B. M.; Bhakta, T.; Dash, S.; Kim, H. S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Nabavi, S. M.; Saeedi, M.; Nabavi, S. F.; Silva, A. S. Recent Advances in Natural Products Analysis, 2020. Cap.15, p.505-567. https://doi.org/10.1016/B978-0-12-816455-6.00015-9
https://doi.org/10.1016/B978-0-12-816455...
).

Sulfur compounds consist of a group of organic compounds derived from the secondary metabolism of plants, bacteria, and fungi, characterized by their sulfur-containing structure (Liu et al., 2022Liu, Z.; Li, M.; Wang, S.; Huang, H.; Zhang, W. Sulfur-containing metabolites from marine and terrestrial fungal sources: Origin, structures, and bioactivities. Marine Drugs, v.20, p.1-18, 2022. https://doi.org/10.3390/md20120765
https://doi.org/10.3390/md20120765...
). These compounds are closely related to vegetable species of the families Alliaceae, Cruciferae, and Leguminosae; they exist initially as non-volatile hydrophilic compounds, which are converted into volatile lipophilic compounds by enzymes upon tissue damage, thus providing them with aroma and flavor (Lu et al., 2022Lu, Y.; Zhang, M.; Huang, D. Dietary organosulfur-containing compounds and their health-promotion mechanisms. Annual Review ofFood Science and Technology , v.13, p.287-313, 2022. https://doi.org/10.1146/annurev-food-052720-010127
https://doi.org/10.1146/annurev-food-052...
).

Organosulfur compounds are reactive and can donate hydrogen sulfide (H2S); this may be due to their antioxidants, anti-inflammatory, antibacterial, antifungal, and insecticidal activities (Shang et al., 2019Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, v.8, e246, 2019. https://doi.org/10.3390/foods8070246
https://doi.org/10.3390/foods8070246...
; Lu et al., 2022Lu, Y.; Zhang, M.; Huang, D. Dietary organosulfur-containing compounds and their health-promotion mechanisms. Annual Review ofFood Science and Technology , v.13, p.287-313, 2022. https://doi.org/10.1146/annurev-food-052720-010127
https://doi.org/10.1146/annurev-food-052...
), which make them potential alternatives for use in grain treatment.

Carotenoids are lipophilic pigments (yellow, red, and orange) found in plants predominantly, and in microorganisms (Amengual, 2019Amengual, J. Bioactive properties of carotenoids in human health. Nutrients, v.11, 2388, 2019. https://doi.org/10.3390/nu11102388
https://doi.org/10.3390/nu11102388...
; Wang et al., 2021Wang, R.; Wang, Y.; Guo, W.; Zeng, M. Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation. Food Hydrocolloids, v.117, e106663, 2021. https://doi.org/10.1016/j.foodhyd.2021.106663
https://doi.org/10.1016/j.foodhyd.2021.1...
). They belong to the chemical class of terpenes, which are hydrocarbons produced by plants and composed of isoprene units, associated with several biological activities (Cox-Georgian, 2019Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpeness. In: Joshee, N.; Dhekney, S.; Parajuli, P. Medicinal plants. Springer, Cham. 2019. Cap.15, p.333-359. https://doi.org/10.1007/978-3-030-31269-5_15
https://doi.org/10.1007/978-3-030-31269-...
).

The chemical structure of carotenoids consists mainly of unsaturated polyene chains, containing a high number of conjugated double bonds (Wang et al., 2021Wang, R.; Wang, Y.; Guo, W.; Zeng, M. Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation. Food Hydrocolloids, v.117, e106663, 2021. https://doi.org/10.1016/j.foodhyd.2021.106663
https://doi.org/10.1016/j.foodhyd.2021.1...
). They are classified into carotenes and xanthophylls, the latter containing oxygen atoms in addition to carbon and hydrogen (Amengual, 2019Amengual, J. Bioactive properties of carotenoids in human health. Nutrients, v.11, 2388, 2019. https://doi.org/10.3390/nu11102388
https://doi.org/10.3390/nu11102388...
). Recognized carotenoids for pharmacological purposes include β-carotene, lycopene, astaxanthin, lutein, zeaxanthin, β-cryptoxanthin, and fucoxanthin, which differ mainly in their chemical structure (Honda, 2020Honda, M. Nutraceutical and pharmaceutical applications of carotenoids. In: Jacob-Lopes, E.; Queiroz, M.; Zepka, L. Pigments from microalgae handbook. Springer, Cham. 2020. Chapter.18, p.449-469. https://doi.org/10.1007/978-3-030-50971-2_18
https://doi.org/10.1007/978-3-030-50971-...
).

Carotenoids have potential for stored grain treatment because they are precursors of vitamin A (Bezerra et al., 2019Bezerra, P. Q. M.; Matos, M. F. R.; Ramos, I. G.; Magalhaes-Guedes, K. T.; Druzian, J. I.; Costa, J. A. V.; Nunes, I. L. Innovative functional nanodispersion: Combination of carotenoid from Spirulina and yellow passion fruit albedo. Food Chemistry, v.285, p.397-405, 2019. https://doi.org/10.1016/j.foodchem.2019.01.181
https://doi.org/10.1016/j.foodchem.2019....
), which improves nutritional value and provides high antioxidant properties, especially against peroxyl and singlet oxygen radicals (Moreira et al., 2018Moreira, M. D.; Melo, M. M.; Coimbra, J. M.; Reis, K. C.; Schwan, R. F.; Silva, C. F. Solid coffee waste as alternative to produce carotenoids with antioxidante and antimicrobial activities. Waste Management, v.82, p.93-99, 2018. https://doi.org/10.1016/j.wasman.2018.10.017
https://doi.org/10.1016/j.wasman.2018.10...
; Honda, 2020Honda, M. Nutraceutical and pharmaceutical applications of carotenoids. In: Jacob-Lopes, E.; Queiroz, M.; Zepka, L. Pigments from microalgae handbook. Springer, Cham. 2020. Chapter.18, p.449-469. https://doi.org/10.1007/978-3-030-50971-2_18
https://doi.org/10.1007/978-3-030-50971-...
).

Natural polysaccharides are bioactive compounds obtained in large quantities from plants, animals, microorganisms, and algae, widely used in the food and pharmaceutical industries (Tudu & Samantha, 2023Tudu, M; Samantha, S. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. European Polymer Journal, v.184, e111801, 2023. https://doi.org/10.1016/j.eurpolymj.2022.111801
https://doi.org/10.1016/j.eurpolymj.2022...
). They can be extracted using methods such as hot water extraction method, dimethyl sulfoxide, methoxyethanol, acidic aqueous solution, lithium chloride, dilution, alkaline water, and enzymolysis (Hasnain et al., 2019Hasnain, S. M. M.; Hasnain, Md. S.; Nayak, A. K.; Natural polysaccharides: sources and extraction methodologies. In: Hasnain, Md. S.; Nayak, A. K. Natural polysaccharides in drug delivery and biomedical applications. Academic Press. 2019. Chapter 1, p.1-14. https://doi.org/10.1016/B978-0-12-817055-7.00001-7
https://doi.org/10.1016/B978-0-12-817055...
).

The chemical structure of polysaccharides contains monosaccharides linked to peptides, amino acids, and/or lipids through glycosidic or covalent bonds (Tudu & Samantha, 2023Tudu, M; Samantha, S. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. European Polymer Journal, v.184, e111801, 2023. https://doi.org/10.1016/j.eurpolymj.2022.111801
https://doi.org/10.1016/j.eurpolymj.2022...
). They are useful for use for improving formulations and have antioxidant activity, a characteristic of interest for grain storage (Xie et al., 2016Xie, J. H.; Jin, M. L.; Morris, G. A; Zha, X. Q.; Chen, H. Q.; Yi, Y.; Li, J. E; Wang, Z. J.; Gao, J.; Nie, S. P.; Shang, P.; Xie, M. Y. Advances on bioactive polysaccharides from medicinal plants. Critical Reviews in Food Science and Nutrition , v.29, p.60-84, 2016. https://doi.org/10.1080/10408398.2015.1069255
https://doi.org/10.1080/10408398.2015.10...
; Tudu & Samantha, 2023Tudu, M; Samantha, S. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. European Polymer Journal, v.184, e111801, 2023. https://doi.org/10.1016/j.eurpolymj.2022.111801
https://doi.org/10.1016/j.eurpolymj.2022...
).

Considering the bioactive properties of the natural compounds mentioned, they are promising alternatives to replace chemical fumigants (the main chemical products used) and insecticides, which is a significant current environmental concern worldwide, along with an increasingly demanding consumer market regarding food consumption due to greater health concerns post-Covid-19 pandemic (Oliveira et al., 2021Oliveira, L. V.; Rolim, A. C. P.; Silva, G. F. da, Araújo, L. C. de, Braga, V. A. de L.; Coura, A. G. L. Changes in dietary habits related to the COVID-19 pandemic: a literature review. Brazilian Journal of Health Review, v.4, p.8464-8477, 2021.). Furthermore, the incorporation of natural compounds contributes to the achievement of the United Nations (UN) Sustainable Development Goals, especially those related to health, environmental protection, sustainability, and responsible production (Brasil, 2024BRASIL. Objetivos de Desenvolvimento Sustentável. 2024. Available on: <Available on: https://brasil.un.org/pt-br/sdgs >. Accessed on: April 2024.
https://brasil.un.org/pt-br/sdgs...
).

Additionally, some of chemical pesticides, mainly fumigants, are classified as extremely toxic and hazardous to the environment; therefore, studying alternative methods is essential due to the risks of these classes of pesticides pose to human health and wildlife, causing acute intoxications to chronic damage, and to the environment through terrestrial and aquatic contamination, even in the short term, thus harming biodiversity (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
). Substituting them with sustainable practices, including the use of natural compounds, is crucial to ensure increasingly responsible agriculture.

Natural compounds have become increasingly important due to their antifungal properties, which can highly benefit the management of grain storage due to issues related to the presence of fungi and mycotoxin development (Taroncher et al., 2024Taroncher, M.; Fuentes, C.; Rodríguez-Carrasco, Y.; Ruiz, M.-J. Assessment of the genotoxic and mutagenic effects induced by T-2 mycotoxin in HepG2 cells. Toxicology, v.501, e153712, 2024. https://doi.org/10.1016/j.tox.2023.153712
https://doi.org/10.1016/j.tox.2023.15371...
). This is even more significant when considering the lack of approved chemical pesticides for controlling fungi in grain storage and the limited efficacy and high costs of available treatments, such as irradiation (Ferreira et al., 2021Ferreira, C. D.; Lang, G. H.; Lindemann, I. S.; Timm, N. S.; Hoffmann, J. F.; Ziegler, V.; Oliveira, M. Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chemistry , v.339, e127810, 2021. https://doi.org/10.1016/j.bioorg.2019.103043
https://doi.org/10.1016/j.bioorg.2019.10...
; Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
).

Integrated Pest Management (IPM) is the most important technology available for pest and disease prevention and control in agriculture (Grijalva et al., 2024Grijalva, I.; Skidmore, A. R.; Milne, M. A.; Olaya-Arenas, P.; Kaplan, I.; Foster, R. E.; Yaninek, J. S. Integrated pest management enhances biological control in a US midwestern agroecosystem by conserving predators and non-pest prey. Agriculture, Ecosystems & Environment, v.368, e109009, 2024. https://doi.org/10.1016/j.agee.2024.109009
https://doi.org/10.1016/j.agee.2024.1090...
). Natural compounds can integrate IPM as a relevant sustainable strategy for pest and disease control due to their antifungal and insecticidal properties (Bouyahya et al., 2022Bouyahya, A.; Guaouguaou, F-E.; Omari, N. E.; Menyiy, N. E.; Balahbib, A.; El-Shazly, M.; Bakri, Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. Journal of Pharmaceutical Analysis, v.12, p.35-57, 2022. https://doi.org/10.1016/j.jpha.2021.07.004
https://doi.org/10.1016/j.jpha.2021.07.0...
). This integration can help balance pest control and environmental conservation by reducing the use of chemical pesticides and their impacts (Hazra et al., 2024Hazra, S.; Das, D.; Moulick, D.; Hossain, A. Endophytes: the treasure house of bioactive compounds with potential applications in sustainable agriculture and other sectors. In: Kumar, A.; Santoyo, G.; Singh, J. Biocontrol Agents for Improved Agriculture - Plant and Soil Microbiome. Academic Press. 2024. Chpter 20, p.477-506. https://doi.org/10.1016/B978-0-443-15199-6.00001-4
https://doi.org/10.1016/B978-0-443-15199...
).

Natural compounds stand out for their low toxicity and potential selective based on according their chemical properties and mechanisms of action, thus posing a lower risk of adverse impacts on non-target organisms (Ooi et al., 2018Ooi, B. K.; Chan, K. G.; Goh, B. H.; Yap, W. H. The role of natural products in targeting cardiovascular diseases via nrf2 pathway: novel molecular mechanisms and therapeutic approaches. Frontiers in Pharmacology, v.15, e1308, 2018. https://doi.org/10.3389/fphar.2018.01308
https://doi.org/10.3389/fphar.2018.01308...
; Atanasov et al., 2021Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, v.20, p.200-216, 2021. https://doi.org/10.1038/s41573-020-00114-z
https://doi.org/10.1038/s41573-020-00114...
; Upmanyu et al., 2022Upmanyu, V.; Sapra, L.; Srivastava, R. K. Employment of selective pharmacologically active natural compounds in treatment and management of osteoporosis. Studies in Natural Products Chemistry, v.75, p.161-241, 2022. https://doi.org/10.1016/B978-0-323-91250-1.00005-7
https://doi.org/10.1016/B978-0-323-91250...
). They also have low environmental persistence, promoting conservation (Barba-Ostria et al., 2022Barba-Ostria, C.; Carrera-Pacheco, S. E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L. P. Evaluation of biological activity of natural compounds: current trends and methods. Molecules, v.27, e4490, 2022. https://doi.org/10.3390/molecules27144490
https://doi.org/10.3390/molecules2714449...
).

Natural compounds are found in a wide variety in nature, indicating diverse chemical properties and distinct mechanisms of action; therefore, advances in research can improve their effectiveness within IPM (Barba-Ostria et al., 2022Barba-Ostria, C.; Carrera-Pacheco, S. E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L. P. Evaluation of biological activity of natural compounds: current trends and methods. Molecules, v.27, e4490, 2022. https://doi.org/10.3390/molecules27144490
https://doi.org/10.3390/molecules2714449...
).

Furthermore, natural compounds can be used as a complement to control methods, thus optimizing pest and disease control while reducing dependence on chemical products ant the associate risks of chemical residues in food and the environment (Leach et al., 2022Leach, A.; Pecenka, J.; Kaplan, I. Does IPPM bear fruit? Evaluating reduced-risk insecticide programmes on pests, pollinators and marketable yield. Journal of Applied Ecology, v.59, p.2993-3002, 2022. https://doi.org/10.1111/1365-2664.14294
https://doi.org/10.1111/1365-2664.14294...
; Hazra et al., 2024Hazra, S.; Das, D.; Moulick, D.; Hossain, A. Endophytes: the treasure house of bioactive compounds with potential applications in sustainable agriculture and other sectors. In: Kumar, A.; Santoyo, G.; Singh, J. Biocontrol Agents for Improved Agriculture - Plant and Soil Microbiome. Academic Press. 2024. Chpter 20, p.477-506. https://doi.org/10.1016/B978-0-443-15199-6.00001-4
https://doi.org/10.1016/B978-0-443-15199...
). However, integrating natural compounds into IPM requires advances in research, which is still in its early stages (Barba-Ostria et al., 2022Barba-Ostria, C.; Carrera-Pacheco, S. E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L. P. Evaluation of biological activity of natural compounds: current trends and methods. Molecules, v.27, e4490, 2022. https://doi.org/10.3390/molecules27144490
https://doi.org/10.3390/molecules2714449...
).

Table 2 presents, as an example of the mentioned natural compounds, studies related to the use of natural compounds with antioxidant, antifungal, and insecticidal properties in storage. In this context, essential oils have a greater number of studies conducted, which may be linked to the fact that they are a mix of bioactive compounds and may even contain other so-called promising components. The other components are studied in other areas, showing potential to also be explored for the treatment of stored grains.

Table 2
Promising natural compounds for treating stored grains: bioactive properties and relevant studies

Mechanisms of Action of Natural Compounds

Currently, there are no approved natural compounds for use in grain storage in Brazil as in field production; consequently, these products are not found in the market (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
). Natural compounds have been used empirically for grain conservation during storage, primarily in research studies, and in small-scale, family, and organic production farms (Chunarkar-Patil et al., 2024Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.N.; Kumar, S. Anticancer drug discovery based on natural products: from computational approaches to clinical studies. Biomedicines, v.12, e201, 2024. https://doi.org/10.3390/biomedicines12010201
https://doi.org/10.3390/biomedicines1201...
).

Information on the biological action mechanisms of natural compounds is essential for their use in the grain treatment; however, research is still incipient, although significant progress has been made in studies on antioxidant activity (Ootani et al., 2013Ootani, M. A.; Aguiar, R. W.; Ramos, A. C. C; Brito, D. R.; Silva, J. B; Cajazeira, J. P. Use of essential oils in agriculture. Journal of Biotechnology and Biodiversity, v.4, p.162-174, 2013. https://doi.org/10.20873/jbb.uft.cemaf.v4n2.ootani
https://doi.org/10.20873/jbb.uft.cemaf.v...
).

Natural compounds promote biological homeostasis by preventing free radical action, which inhibits oxidation chain reactions (Ferreira et al., 2009Ferreira, I.; Barros, L.; Abreu, R. M. V. Antioxidants in wild mushrooms. Current Medicinal Chemistry, v.16, p.1543-1560, 2009. https://doi.org/10.2174/092986709787909587
https://doi.org/10.2174/0929867097879095...
).

The antioxidant action of natural compounds has been well-documented. It can be primary, delaying or inhibiting the activity of components involved in the initiation or propagation of the oxidative process; or it can be secondary, neutralizing or scavenging free radicals, transforming them into less reactive substances, and enhancing the primary action by donating hydrogen (Boulebd & Spiegel, 2023Boulebd, H.; Spiegel, M. Computational assessment of the primary and secondary antioxidant potential of alkylresorcinols in physiological media. RSC Advances, v.13, p.29463-29476, 2023. https://doi.org/10.1039/d3ra05967g
https://doi.org/10.1039/d3ra05967g...
).

Distinct mechanisms of antioxidant action involve the modulation of the activity of reactive oxygen species (ROS) and protein-coding genes active in the defense system, redox reactions that neutralize and stabilize free radicals, stimulation of endogenous antioxidants such as enzymes, chelation of pro-oxidant metal ions, and competition for active sites (Ferreira et al., 2009Ferreira, I.; Barros, L.; Abreu, R. M. V. Antioxidants in wild mushrooms. Current Medicinal Chemistry, v.16, p.1543-1560, 2009. https://doi.org/10.2174/092986709787909587
https://doi.org/10.2174/0929867097879095...
; Lichota et al., 2019Lichota, A.; Gwozdzinski, L.; Gwozdzinski, K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. European Journal of Medicinal Chemistry, v.176, p.68-91, 2019. https://doi.org/10.1016/j.ejmech.2019.04.075
https://doi.org/10.1016/j.ejmech.2019.04...
).

The antimicrobial activity of natural compounds occurs by disturbing cell membrane permeability and inhibiting respiration, resulting in coagulation of vital cellular components and destabilization of the lipid bilayer due to disruption of bonds, ultimately resulting cell death (Hassan et al., 2020Hassan, H. A.; Genaidy, M. M.; Kamel, M. S.; Abdelwahab, S. F. Synergistic antifungal activity of mixtures of clove, cumin and caraway essential oils and their major active components. Journal of Herbal Medicine, v.24, e100399, 2020. https://doi.org/10.1016/j.hermed.2020.100399
https://doi.org/10.1016/j.hermed.2020.10...
; Radunz et al., 2020Radunz, M.; Hackbart, H. C. S.; Camargo, T. M.; Nunes, C. F. P.; Barros, F. A. P.; Magro, J. D.; Sanches Filho, P. J.; Gandra, E. A.; Radünz, A. L.; Zavareze, E. R. Antimicrobial potential of spray drying encapsulated thyme (Thymus vulgaris) essential oil on the conservation of hamburger-like meat products. International Journal of Food Microbiology , v.330, e108696, 2020. https://doi.org/10.1016/j.ijfoodmicro.2020.108696
https://doi.org/10.1016/j.ijfoodmicro.20...
). Membrane damage can also compromise the electrical gradients of cells, which affect energy generation and cellular homeostasis (Nourbakhsh et al., 2022Nourbakhsh, F.; Lotfalizadeh, M.; Badpeyma, M.; Shakeri, A.; Soheili, V. From plants to antimicrobials: Natural products against bacterial membranes. Phytotherapy Research, v.36, p.33-52, 2022. https://doi.org/10.1002/ptr.7275
https://doi.org/10.1002/ptr.7275...
).

Natural compounds can be used as insecticides due to their toxic and repellent effects and inhibition of feeding, growth, and reproduction of organisms (Hammoud et al., 2022Hammoud, Z.; Abada, M. B.; Greige-Gerges, H.; Elaissari, A.; Jemâa, J. M. B. Insecticidal effects of natural products in free and encapsulated forms: An overview. Journal of Natural Pesticide Research, v.1, e100007, 2022. https://doi.org/10.1016/j.napere.2022.100007
https://doi.org/10.1016/j.napere.2022.10...
). One of their insecticidal mechanisms of action is neurotoxicity, which may occur through the induction of nerve impulses due to changes in the permeability of sodium-excited nerve cells, disturbances in food-related neurotransmitters and chemosensors, and activation of neurotransmitter receptors, which alter cellular functions and block essential ions (Lee et al., 2019Lee, J. P.; Kang, M. G.; Lee, J. Y.; Oh, J. M.; Baek, S. C.; Leem, H. H.; Park, D.; Cho, M.-L.; Kim, H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorganic Chemistry, v.89, e103043, 2019. https://doi.org/10.1016/j.foodchem.2020.127810
https://doi.org/10.1016/j.foodchem.2020....
; Vanegas-Estévez et al., 2024Vanegas-Estévez, T.; Duque, F. M.; Urbina, D. L.; Vesga, L. C.; Mendez-Sanchez, S. C. Design and elucidation of an insecticide from natural compounds targeting mitochondrial proteins of Aedes aegypti. Pesticide Biochemistry and Physiology , v.198, e105721, 2024. https://doi.org/10.1016/j.pestbp.2023.105721
https://doi.org/10.1016/j.pestbp.2023.10...
).

Additionally, natural insecticides induce deterrence, altering insect behavior through anti-feeding effects and hormonal changes, mainly juvenile and ecdysteroid hormones, which affects insect growth and development and directly damages tissue structure (Mordue & Blackwell, 1993Mordue, A. J.; Blackwell, A. Azadirachtin: An update. Journal of Insect Physiology, v.39, p.903-924, 1993. https://doi.org/10.1016/0022-1910(93)90001-8
https://doi.org/10.1016/0022-1910(93)900...
; Mossa, 2016Mossa, A. T. H. Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology, v.9, p.354-378, 2016. https://doi.org/10.3923/jest.2016.354.378
https://doi.org/10.3923/jest.2016.354.37...
)

Some natural compounds also function as repellents, with effective effects on grain-damaging insects, or as attractants, mainly as pheromones and alarm synomones for pest monitoring and control (Luu-dam et al., 2021Luu-Dam, N. A.; Tabanca, N.; Estep, A. S.; Nguyen, D. H.; Kendra, P. E. Insecticidal and attractant activities of Magnolia citrata leaf essential oil against two major pests from Diptera: Aedes aegypti (Culicidae) and Ceratitis capitata (Tephritidae). Molecules, v.26, e2311, 2021. https://doi.org/10.3390/molecules26082311
https://doi.org/10.3390/molecules2608231...
; Hammoud et al., 2022Hammoud, Z.; Abada, M. B.; Greige-Gerges, H.; Elaissari, A.; Jemâa, J. M. B. Insecticidal effects of natural products in free and encapsulated forms: An overview. Journal of Natural Pesticide Research, v.1, e100007, 2022. https://doi.org/10.1016/j.napere.2022.100007
https://doi.org/10.1016/j.napere.2022.10...
).

Another insecticidal mechanism of action of natural compounds is stomach damage, where toxins introduced damage the epithelial cells of the insect’s stomach, preventing feeding (Ibrahim et al., 2010Ibrahim, M. A.; Griko, N.; Junker, M.; Bulla, L. A. Bacillus thuringiensis: A genomics and proteomics perspective. Bioengineered Bugs, v.1, p.31-50, 2010. https://doi.org/10.4161/bbug.1.1.10
https://doi.org/10.4161/bbug.1.1.10...
). Furthermore, some natural compounds have ovicidal activity by affecting gas exchange and water balance, causing hormonal and enzymatic changes, coagulation of protoplasm, and damage to the egg’s outer structure, which will prevent the hatching of new individuals (Smith, 1952Smith, E. H. Tree spray oils. In: American Chemical Society. agricultural applications of petroleum products. Advances in Chemistry Series. 1952. Chapter 1, p.3-11. https://doi.org/10.1021/ba-1951-0007.ch001
https://doi.org/10.1021/ba-1951-0007.ch0...
).

Chemical active ingredients approved for use in stored grains in Brazil have three distinct action mechanisms: modulation of sodium channels, inhibition of complex IV in the mitochondria electron transport chain, and inhibition of acetylcholinesterase/modulation of sodium channels (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
).

Despite the efficacy of chemical pesticides, the number of approved active ingredients and their associated mechanisms of action is limited, which challenges pest control in grain storage facilities and contributes to the emergence of resistance due to excessive use of insecticides and fumigants with similar mechanisms of action (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
; Li et al., 2024Li, X.-Y.; Si, F.-L.; Zhang, X.-X.; Zhang, Y.-J.; Chen, B. Characteristics of trypsin genes and their roles in insecticide resistance based on omics and functional analyses in the malaria vector Anopheles sinensis. Pesticide Biochemistry and Physiology, v.201, e105883, 2024. https://doi.org/10.1016/j.pestbp.2024.1058
https://doi.org/10.1016/j.pestbp.2024.10...
). Moreover, some natural compounds share similar mechanisms of action with approved insecticides (Peng et al., 2023Peng, J.; Chen, Z.; Chen, X.; Zheng, R.; Lu, S.; Seyab, M.; Yang, F.; Li, Q.; Tang, Q. Insecticidal potential of a Consolida ajacis extract and its major compound (ethyl linoleate) against the diamondback moth, Plutella xylostella. Pesticide Biochemistry and Physiology , v.195, e105557, 2023. https://doi.org/10.1016/j.pestbp.2023.105557
https://doi.org/10.1016/j.pestbp.2023.10...
; Vanegas-Estévez et al., 2024Vanegas-Estévez, T.; Duque, F. M.; Urbina, D. L.; Vesga, L. C.; Mendez-Sanchez, S. C. Design and elucidation of an insecticide from natural compounds targeting mitochondrial proteins of Aedes aegypti. Pesticide Biochemistry and Physiology , v.198, e105721, 2024. https://doi.org/10.1016/j.pestbp.2023.105721
https://doi.org/10.1016/j.pestbp.2023.10...
; Wang et al., 2024Wang, K.; Yan, Y.; Huang, L.; Sun, H.; Yu, N.; Liu, Z. Insecticidal activity of the spider neurotoxin PPTX-04 through modulating insect voltage-gated sodium channel. Pesticide Biochemistry and Physiology , v.201, e105853, 2024. https://doi.org/10.1016/j.pestbp.2024.105853
https://doi.org/10.1016/j.pestbp.2024.10...
). These factors underscore the potential of natural compounds in replacing chemical pesticides for controlling pests in stored grains, mainly in the absence of approved fungicides, and the benefits of using natural antioxidants over synthetic ones.

Limitations of the Use of Natural Compounds

Natural compounds shown promise across various sectors; however, gaps remain in their utilization. Limited availability of studies in the literature remains a key constraint in their application for treating stored grains. Furthermore, it is important to emphasize the lack of approved natural products specifically for use in grain storage in Brazil (Agrofit, 2003Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
http://www.agricultura.gov.br/agrofit...
), which makes the use of natural compounds an empirical approach (Chunarkar-Patil et al., 2024Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.N.; Kumar, S. Anticancer drug discovery based on natural products: from computational approaches to clinical studies. Biomedicines, v.12, e201, 2024. https://doi.org/10.3390/biomedicines12010201
https://doi.org/10.3390/biomedicines1201...
).

Essential oils are the most widely researched natural compounds for insect pest control, which is attributed to their complex composition rich in diverse bioactive substances rather than single isolated substance (Giunti et al., 2019Giunti, G.; Palermo, D.; Laudani, F.; Algeri, G. M.; Campolo, O.; Palmeri, V. Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Industrial Crops and Products, v.142, e111869, 2019. https://doi.org/10.1016/j.indcrop.2019.111869
https://doi.org/10.1016/j.indcrop.2019.1...
; Kavallieratos et al., 2021Kavallieratos, N. G.; Skourti, A.; Nika, E. P.; Mártonfi, P.; Spinozzi, E.; Maggi, F. Tanacetum vulgare essential oil as grain protectant against adults and larvae of four major stored-product insect pests. Journal of Stored Products Research , v.94, e101882, 2021. https://doi.org/10.1016/j.jspr.2021.101882
https://doi.org/10.1016/j.jspr.2021.1018...
; Remesh & Babu, 2023Remesh, A. V.; Babu, C. S. V. Fumigant and contact toxicities of individual and additive combinations of biorational-essential oils for control of rice weevil (Sitophilus oryzae). Natural Product Research , v.37, p.2748-2752, 2023. https://doi.org/10.1080/14786419.2022.21
https://doi.org/10.1080/14786419.2022.21...
). Despite initial research progress, challenges persist in their identification, extraction, and application, including difficulties in isolation, extraction efficiency, low concentrations (especially in plants), stability, bioavailability, and legal considerations (Albuquerque et al., 2021Albuquerque, B. R.; Heleno, S. A.; Oliveira, M. B.; Barros, L.; Ferreira, I. C. Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function. v.12, p.14-29, 2021. https://doi.org/10.1039/D0FO02324H
https://doi.org/10.1039/D0FO02324H...
).

Limitations in selecting the source matrix arise from the inability to cultivate organisms and the reduced production of target compounds outside their natural habitats (Atanasov et al., 2021Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, v.20, p.200-216, 2021. https://doi.org/10.1038/s41573-020-00114-z
https://doi.org/10.1038/s41573-020-00114...
). Therefore, exploring genetic manipulation and gene expression related to compound synthesis is necessary for cultivating organisms and inducing substance biosynthesis outside their natural habitats (Atanasov et al., 2021Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, v.20, p.200-216, 2021. https://doi.org/10.1038/s41573-020-00114-z
https://doi.org/10.1038/s41573-020-00114...
).

Natural compounds from non-abundant sources often result in limited availability, which hinders their industrial applicability (Yang et al., 2020Yang, D.; Park, S. Y.; Park, Y. S.; Eun, H.; Lee, S. Yu. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, v.38, p.745-765, 2020. https://doi.org/10.1016/j.tibtech.2019.11.007
https://doi.org/10.1016/j.tibtech.2019.1...
), as overexploitation is not sustainable and threatens species survival.

Several methods, such as elicitation and metabolic engineering, have been investigated to increase compound concentration in organisms (Albuquerque et al., 2021Albuquerque, B. R.; Heleno, S. A.; Oliveira, M. B.; Barros, L.; Ferreira, I. C. Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function. v.12, p.14-29, 2021. https://doi.org/10.1039/D0FO02324H
https://doi.org/10.1039/D0FO02324H...
). Elicitation boosts the production of bioactive compounds in plant secondary metabolism under stress conditions (Zlotek et al., 2019Złotek, U.; Szymanowska, U.; Jakubczyk, A.; Sikora, M.; Świeca, M. Effect of arachidonic and jasmonic acid elicitation on the content of phenolic compounds and antioxidant and anti-inflammatory properties of wheatgrass (Triticum aestivum, L.). Food Chemistry , v.288, p.256-261, 2019. https://doi.org/10.1016/j.foodchem.2019.02.124
https://doi.org/10.1016/j.foodchem.2019....
). Metabolic engineering stimulates compound production in microorganisms via de novo biosynthesis (Albuquerque et al., 2021Albuquerque, B. R.; Heleno, S. A.; Oliveira, M. B.; Barros, L.; Ferreira, I. C. Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function. v.12, p.14-29, 2021. https://doi.org/10.1039/D0FO02324H
https://doi.org/10.1039/D0FO02324H...
).

Concerning stability, natural compounds are generally less stable than synthetic counterparts (Lourenço et al., 2019Lourenço, S. C.; Moldão-Martins, M.; Alves, V. D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules, v.24, p.1-25, 2019. https://doi.org/10.3390/molecules24224132
https://doi.org/10.3390/molecules2422413...
), requiring careful storage and potentially shorter shelf life.

Most natural compounds show low bioavailability and bioaccessibility, which results in reduced activity (Albuquerque et al., 2021Albuquerque, B. R.; Heleno, S. A.; Oliveira, M. B.; Barros, L.; Ferreira, I. C. Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function. v.12, p.14-29, 2021. https://doi.org/10.1039/D0FO02324H
https://doi.org/10.1039/D0FO02324H...
; Rodrigues et al., 2022Rodrigues, D. B.; Marques, M. C.; Hacke, A.; Loubet Filho, P. S.; Cazarin, C. B. B.; Mariutti, L. R. B. Trust your gut: Bioavailability and bioaccessibility of dietary compounds, Current Research in Food Science, v.5, p.228-233, 2022. https://doi.org/10.1016/j.crfs.2022.01.002
https://doi.org/10.1016/j.crfs.2022.01.0...
). Influencing factors include chemical structure, solubility, processing, synergistic/antagonistic effects with other compounds, and biotransformation (Domínguez-Ávila et al., 2017Domínguez-Avila, J. A.; Wall-Medrano, A.; Velderrain-Rodríguez, G. R.; Chen, C. O.; Salazar-López, N. J.; Robles-Sánchez, M.; González-Aguilar, G. A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food & Function , v.8, p.15-38, 2017.https://doi.org/10.1039/c6fo01475e
https://doi.org/10.1039/c6fo01475e...
).

Research into natural compound applications for treating stored grains remains at an empirical stage, lacking standardized methods, which limits their effectiveness. Variations in application methods can yield inconsistent results and hinder replications and widespread implementation, requiring further research. Researchers have achieved promising results by incorporating these compounds to packaging (Feng et al., 2019Feng, Y. X.; Wang, Y.; Chen, Z. Y; Guo, S. S.; You, C. X.; Du, S. S. Efficacy of bornyl acetate and camphene from Valeriana officinalis essential oil against two storage insects. Environmental Science and Pollution Research, v.26, p.16157-16165, 2019. https://doi.org/10.1007/s11356-019-05035-y
https://doi.org/10.1007/s11356-019-05035...
; Bocate et al., 2021Bocate, K. P.; Evangelista, A. G.; Luciano, F. B. Garlic essential oil as an antifungal and anti-mycotoxin agent in stored corn. Food Science and Technology, v.147, e111600, 2021. https://doi.org/10.1016/j.lwt.2021.111600
https://doi.org/10.1016/j.lwt.2021.11160...
); however, this applicability in broader spaces remains unverified.

Legal considerations also challenge natural compound application studies. Patent acquisition can be complex, especially in some countries that do not grant intellectual property rights to natural products in their origin forms (Burton & Evans-Illidge, 2014Burton, G.; Evans-Illidge, E. A. Emerging R and D law: the Nagoya Protocol and its implications for researchers. ACS Chemical Biology, v.9, p.588-591, 2014. https://doi.org/10.1021/cb500045t
https://doi.org/10.1021/cb500045t...
; Harrison, 2014Harrison, C. Patenting natural products just got harder. Nature Biotechnology, v.32, p.403-404, 2014. https://doi.org/10.1038/nbt0514-403a
https://doi.org/10.1038/nbt0514-403a...
; Atanasov et al., 2021Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, v.20, p.200-216, 2021. https://doi.org/10.1038/s41573-020-00114-z
https://doi.org/10.1038/s41573-020-00114...
). This complexity extends to patent registration in Brazil (INPI, 2020INPI. Instituto Nacional da Propriedade Industrial. Brasil. Patentes. 2020. Available on: Available on: https://www.gov.br/inpi/pt-br/servicos/perguntas-frequentes/patentes . Accessed on: May 2024.
https://www.gov.br/inpi/pt-br/servicos/p...
).

Considering these challenges, finding effective solutions for studying the application of natural compounds in stored grains is crucial. Biotechnology and nanotechnology provide potential pathways for sustainable exploration, addressing agricultural demands and consumer needs.

Future Perspectives on the Use of Natural Compounds in Stored Grains

The integration of natural compounds into available methods for treating stored grains holds promise due to their potential benefits, low toxicity, and minimal environmental impact, despite some limitations. The growing demand for sustainable alternatives, especially following the development of the UN Sustainable Development Goals, stimulates research into effective and stable production, extraction methods, and formulations. Genetic improvement, encapsulation, and controlled release of natural compounds are promising technologies and strategies to enhance the efficacy of these substances in protecting stored grains.

Furthermore, advancements in regulations and certifications for natural products, along with their added value, can contribute to the standardization and widespread adoption of these compounds in agriculture. Additionally, Collaboration among stakeholders-from producers and consumers to the private sector and regulatory bodies-is essential for promoting these biological solutions within the sustainable agriculture context.

Conclusions

  1. The study of natural compounds for treatments of stored grains offers promising new sustainable approaches for grain storage management.

  2. There is a demand for further research to identify new useful natural compounds, enhance the understanding of their mechanisms of action and safety, as well as the extraction, application, and formulation processes that enable the use of these substances as a method for treating stored grains.

Literature Cited

  • Abdelkhalek, A.; Salem, M. Z. M.; Kordy, A. M.; Salem, A. Z. M.; Behiry, S. I. Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microbial Pathogenesis, v.147, e104383, 2020. https://doi.org/10.1016/j.micpath.2020.104383
    » https://doi.org/10.1016/j.micpath.2020.104383
  • Abdullahi, N.; Dandago, M. A. Postharvest losses in food grains - A Review. Turkish Journal of Food and Agriculture Sciences, v.3, p.25-36, 2021. https://doi.org/10.53663/turjfas.958473
    » https://doi.org/10.53663/turjfas.958473
  • Abed, M. S.; Abdul-Nabe, R. A.; Petrescu, L.; Mihailescu, D. F. Effectiveness of microwave radiation in eliminating different insect species contaminating grain crops. Journal of Stored Products Research, v.102, e102121, 2023. https://doi.org/10.1016/j.jspr.2023.102121
    » https://doi.org/10.1016/j.jspr.2023.102121
  • Agrofit 2003 - Ministério da Agricultura, Pecuária e Abastecimento. 2003. Apresenta informações sobre produtos fitossanitários. Disponível em: <Disponível em: http://www.agricultura.gov.br/agrofit > Acess on: 05 may 2024.
    » http://www.agricultura.gov.br/agrofit
  • Akinbuluma, M. D.; Ewete, F. K.; Oladosu, I. A. Amide alkaloids from Piper guineense and its crude extract as protectants against Sitophilus zeamais Journal of Plant Diseases and Protection, v.128, p.1557-1564, 2021. https://doi.org/10.1007/s41348-021-00518-y
    » https://doi.org/10.1007/s41348-021-00518-y
  • Akinneye, J. O.; Adeleye, O. A.; Adesina, F. P.; Akinyemi, M. I. Assessment of pesticide residue on cocoa beans in Ondo State, Nigeria. Brazilian Journal of Biological Sciences, v.5, p.577-588, 2018. https://doi.org/10.21472/bjbs.051031
    » https://doi.org/10.21472/bjbs.051031
  • Albuquerque, B. R.; Heleno, S. A.; Oliveira, M. B.; Barros, L.; Ferreira, I. C. Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function. v.12, p.14-29, 2021. https://doi.org/10.1039/D0FO02324H
    » https://doi.org/10.1039/D0FO02324H
  • Amengual, J. Bioactive properties of carotenoids in human health. Nutrients, v.11, 2388, 2019. https://doi.org/10.3390/nu11102388
    » https://doi.org/10.3390/nu11102388
  • Angelovic, M.; Krištof, K.; Jobbágy, J.; Findura, P.; Križan, M. The effect of conditions and storage time on course of moisture and temperature of maize grains. BIO Web of Conferences, v.10, p.1-6. 2018. https://doi.org/10.1051/bioconf/20181002001
    » https://doi.org/10.1051/bioconf/20181002001
  • Araújo, R. I.; Freire, C.; Cruz, S.; Peters, L. P.; Ferreira, J. Identificação de isolados de Fusarium encontrados em grãos de milho durante o armazenamento em silos no estado do Acre. Enciclopédia Biosfera, v.18, p.132-146, 2021. https://doi.org/10.18677/EnciBio_2021D30
    » https://doi.org/10.18677/EnciBio_2021D30
  • Ariong, R. M.; Okello, D. M.; Otim, M. H.; Paparu, P. The cost of inadequate postharvest management of pulse grain: Farmer losses due to handling and storage practices in Uganda. Agriculture & Food Security, v.12, p.1-22, 2023. https://doi.org/10.1186/s40066-023-00423-7
    » https://doi.org/10.1186/s40066-023-00423-7
  • Arora, S.; Stanley, J.; Srivastava, C. Temporal dynamics of phosphine fumigation against insect pests in wheat storage. Crop Protection, v.144, e105602, 2021. https://doi.org/10.1016/j.cropro.2021.105602
    » https://doi.org/10.1016/j.cropro.2021.105602
  • Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, v.20, p.200-216, 2021. https://doi.org/10.1038/s41573-020-00114-z
    » https://doi.org/10.1038/s41573-020-00114-z
  • Ayalew, A. A. Insecticidal activity of Lantana camara extract oil on controlling maize grain weevils. Toxicology Research and Application, v.4, p.1-10, 2020. https://doi.org/10.1177/2397847320906491
    » https://doi.org/10.1177/2397847320906491
  • Aziz, Z.; Ahmad, A.; Setapar, S.; Karakucuk, A.; Azim, M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.; Ashraf, G. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - A review. Current Drug Metabolism, v.19, p.1100-1110, 2018. https://doi.org/10.2174/1389200219666180723144850
    » https://doi.org/10.2174/1389200219666180723144850
  • Baliota, G. V.; Athanassiou, C. G. Evaluation of a Greek diatomaceous earth for stored product insect control and techniques that maximize its insecticidal efficacy. Applied Sciences., v.10, e6441. 2020. https://doi.org/10.3390/app10186441
    » https://doi.org/10.3390/app10186441
  • Baliota, G. V.; Athanassiou, C. G. Evaluation of inert dusts on surface applications and factors that maximize their insecticidal efficacy. Applied Sciences, v.13, e2767, 2023. https://doi.org/10.3390/app13052767
    » https://doi.org/10.3390/app13052767
  • Barba, F.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science and Technology, v.49, p.96-109, 2016. https://doi.org/10.1016/j.tifs.2016.01.006
    » https://doi.org/10.1016/j.tifs.2016.01.006
  • Barba-Ostria, C.; Carrera-Pacheco, S. E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L. P. Evaluation of biological activity of natural compounds: current trends and methods. Molecules, v.27, e4490, 2022. https://doi.org/10.3390/molecules27144490
    » https://doi.org/10.3390/molecules27144490
  • Belasli, A.; Ben Miri, Y.; Aboudaou, M.; Ouahioune, L. A.; Montañes, L.; Ariño, A.; Djenane, D. Antifungal, antitoxigenic, and antioxidant activities of the essential oil from laurel (Laurus nobilis L.): Potential use as wheat preservative. Food Science Nutrition, v.8, p.4717-4729, 2020. https://doi.org/10.1002/fsn3.1650
    » https://doi.org/10.1002/fsn3.1650
  • Bertuzzi, T.; Romano, M.; Rastelli, S.; Giorni, P. Mycotoxins and related fungi in Italian paddy rice during the growing season and storage. Toxins, v.11, e151, 2019. https://doi.org/10.3390/toxins11030151
    » https://doi.org/10.3390/toxins11030151
  • Bezerra, P. Q. M.; Matos, M. F. R.; Ramos, I. G.; Magalhaes-Guedes, K. T.; Druzian, J. I.; Costa, J. A. V.; Nunes, I. L. Innovative functional nanodispersion: Combination of carotenoid from Spirulina and yellow passion fruit albedo. Food Chemistry, v.285, p.397-405, 2019. https://doi.org/10.1016/j.foodchem.2019.01.181
    » https://doi.org/10.1016/j.foodchem.2019.01.181
  • Bocate, K. P.; Evangelista, A. G.; Luciano, F. B. Garlic essential oil as an antifungal and anti-mycotoxin agent in stored corn. Food Science and Technology, v.147, e111600, 2021. https://doi.org/10.1016/j.lwt.2021.111600
    » https://doi.org/10.1016/j.lwt.2021.111600
  • Borotová, P.; Galovičová, L.; Valková, V.; Ďúranová, H.; Vuković, N.; Vukić, M.; Babošová, M.; Kačániová, M. Biological activity of essential oil from Foeniculum vulgare Acta Horticulturae et Regiotecturae, v.24, p.148-152, 2021. https://doi.org/10.2478/ahr-2021-0037
    » https://doi.org/10.2478/ahr-2021-0037
  • Boulebd, H.; Spiegel, M. Computational assessment of the primary and secondary antioxidant potential of alkylresorcinols in physiological media. RSC Advances, v.13, p.29463-29476, 2023. https://doi.org/10.1039/d3ra05967g
    » https://doi.org/10.1039/d3ra05967g
  • Bouyahya, A.; Guaouguaou, F-E.; Omari, N. E.; Menyiy, N. E.; Balahbib, A.; El-Shazly, M.; Bakri, Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. Journal of Pharmaceutical Analysis, v.12, p.35-57, 2022. https://doi.org/10.1016/j.jpha.2021.07.004
    » https://doi.org/10.1016/j.jpha.2021.07.004
  • BRASIL. Objetivos de Desenvolvimento Sustentável. 2024. Available on: <Available on: https://brasil.un.org/pt-br/sdgs >. Accessed on: April 2024.
    » https://brasil.un.org/pt-br/sdgs
  • Briggs, D. E.; McGuinness, G. Microbes on barley grains. Journal of the Institute of Brewing, v.99, p.249-255, 1993. https://doi.org/10.1002/j.2050-0416.1993.tb01168.x
    » https://doi.org/10.1002/j.2050-0416.1993.tb01168.x
  • Bucklin, R; Thompson, Sid; Montross, M.; Abdel-Hadi, A. Grain storage systems design. In: Kutz, M. Handbook of farm, dairy and food machinery. Academic Press. 2019. Cap.9, p.175-223. https://doi.org/10.1016/B978-0-12-814803-7.00009-9
    » https://doi.org/10.1016/B978-0-12-814803-7.00009-9
  • Buitimea-Cantúa, G. V.; Velez-Haro, J. M.; Buitimea-Cantúa, N. E.; Molina-Torres, J.; Rosas-Burgos, E C. GC-EIMS analysis, antifungal and anti-aflatoxigenic activity of Capsicum chinense and Piper nigrum fruits and their bioactive compounds capsaicin and piperine upon Aspergillus parasiticus Natural Product Research, v.34, p.1452-1455, 2020. https://doi.org/10.1080/14786419.2018.1514395
    » https://doi.org/10.1080/14786419.2018.1514395
  • Burton, G.; Evans-Illidge, E. A. Emerging R and D law: the Nagoya Protocol and its implications for researchers. ACS Chemical Biology, v.9, p.588-591, 2014. https://doi.org/10.1021/cb500045t
    » https://doi.org/10.1021/cb500045t
  • Cafiero, C.; Viviani, S.; Nord, M. Food security measurement in a global context: The food insecurity experience scale. Measurement, v.116, p.146-152, 2018. https://doi.org/10.1016/j.measurement.2017.10.065
    » https://doi.org/10.1016/j.measurement.2017.10.065
  • Chen, Y.; Xing, M.; Chen, T.; Tian, S.; Li, B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chemistry , v.415, e135787, 2023. https://doi.org/10.1016/j.foodchem.2023.135787
    » https://doi.org/10.1016/j.foodchem.2023.135787
  • Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.N.; Kumar, S. Anticancer drug discovery based on natural products: from computational approaches to clinical studies. Biomedicines, v.12, e201, 2024. https://doi.org/10.3390/biomedicines12010201
    » https://doi.org/10.3390/biomedicines12010201
  • Coradi, P. C.; Oliveira, M. B. de; Carneiro, L. de O.; Souza, G. A. C. de; Elias, M. C.; Brackmann, A.; Teodoro, P. E. Technological and sustainable strategies for reducing losses and maintaining the quality of soybean grains in real production scale storage units. Journal of Stored Products Research , v.87, e101624, 2020. https://doi.org/10.1016/j.jspr.2020.101624
    » https://doi.org/10.1016/j.jspr.2020.101624
  • Cota-Arriola, O.; Cortez-Rocha, M. O.; Rosas-Burgos, E. C.; Burgos-Hernández, A.; López-Franco, Y. L.; Plascencia-Jatomea, M. Antifungal effect of chitosan on the growth of Aspergillus parasiticus and production of aflatoxin B1. Polymer International, v.60, p.937-944, 2011. https://doi.org/10.1002/pi.3054
    » https://doi.org/10.1002/pi.3054
  • Covele, G.; Gulube, A.; Tivana, L.; Ribeiro-Barros, A. I.; Carvalho, M. O.; Ndayiragije, A.; Nguenha, R. Effectiveness of hermetic containers in controlling paddy rice (Oryza sativa L.) storage insect pests. Journal of Stored Products Research , v.89, e101710, 2020. https://doi.org/10.1016/j.jspr.2020.101710
    » https://doi.org/10.1016/j.jspr.2020.101710
  • Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpeness. In: Joshee, N.; Dhekney, S.; Parajuli, P. Medicinal plants. Springer, Cham. 2019. Cap.15, p.333-359. https://doi.org/10.1007/978-3-030-31269-5_15
    » https://doi.org/10.1007/978-3-030-31269-5_15
  • Dai, C.; Xiao, X.; Sun, F; Zhang, Y.; Hoyer, D.; Shen, J.; Tang, S.; Velkov, T. T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Archives of Toxicology, v.93, p.3041-3056, 2019. https://doi.org/10.1007/s00204-019-02577-5
    » https://doi.org/10.1007/s00204-019-02577-5
  • Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B. M.; Bhakta, T.; Dash, S.; Kim, H. S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Nabavi, S. M.; Saeedi, M.; Nabavi, S. F.; Silva, A. S. Recent Advances in Natural Products Analysis, 2020. Cap.15, p.505-567. https://doi.org/10.1016/B978-0-12-816455-6.00015-9
    » https://doi.org/10.1016/B978-0-12-816455-6.00015-9
  • Dias, T. F. V.; Arcanjo, L. L.; Costa, G. L.; Souza, C. S.; Lima, C. A. R. Controle de pragas e tratamento de grãos armazenados para uso em rações para animais. Research, Society and Development, v.9, e739996964, 2020. https://doi.org/10.33448/rsd-v9i9.69641
    » https://doi.org/10.33448/rsd-v9i9.69641
  • Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A Critical Review. Medicines, v.3, p.25, 2016. https://doi.org/10.3390/medicines3040025
    » https://doi.org/10.3390/medicines3040025
  • Domínguez-Avila, J. A.; Wall-Medrano, A.; Velderrain-Rodríguez, G. R.; Chen, C. O.; Salazar-López, N. J.; Robles-Sánchez, M.; González-Aguilar, G. A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food & Function , v.8, p.15-38, 2017.https://doi.org/10.1039/c6fo01475e
    » https://doi.org/10.1039/c6fo01475e
  • Duan, W.-Y.; Zhu, X.-M.; Zhang, S.-B.; Lv, Y.-Y.; Zhai, H.-C.; Wei, S.; Ma, P.-A.; Hu, Y.-S. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. International Journal of Food Microbiology, v.410, e110514, 2024. https://doi.org/10.1016/j.ijfoodmicro.2023.110514
    » https://doi.org/10.1016/j.ijfoodmicro.2023.110514
  • Dubey, V. K.; Mandal, S. K.; Chowdhury, S. Insight into management of rodents in storage grain. Just Agriculture, v.3, p.609-615, 2023. https://doi.org/10.13140/RG.2.2.35345.92005
    » https://doi.org/10.13140/RG.2.2.35345.92005
  • Ebadollahi, A.; Setzer, W. N. Evaluation of the toxicity of Satureja intermedia C. A. mey essential oil to storage and greenhouse insect pests and a predator ladybird. Foods, v.9, e712, 2020. https://doi.org/10.3390/foods9060712
    » https://doi.org/10.3390/foods9060712
  • Elias, M. C. Secagem e armazenamento de grãos de milho e de sorgo na propriedade rural. In: Parfitt, J. M. B. Produção de milho e sorgo em várzea. Pelotas: Embrapa Clima Temperado. 2000. Cap.12, p.107-146.
  • El-Sayed, R. A.; Jebur, A. B.; Kang, W.; El-Demerdash, F. M. An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, v.2, p.91-102, 2022. https://doi.org/10.1016/j.jfutfo.2022.03.002
    » https://doi.org/10.1016/j.jfutfo.2022.03.002
  • Elshafie, H. S.; Gruľová, D.; Baranová, B.; Caputo, L.; De Martino, L.; Sedlák, V.; Camele, I.; De Feo, V. Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis l. growing wild in Slovakia. Molecules, v.24, e1206, 2019. https://doi.org/10.3390/molecules24071206
    » https://doi.org/10.3390/molecules24071206
  • Falleh, H.; Jemaa, M. B.; Saada, M.; Ksouri, R. Essential oils: A promising ecofriendly food preservative. Food Chemistry , v.330, e127268, 2020. https://doi.org/10.1016/j.foodchem.2020.127268
    » https://doi.org/10.1016/j.foodchem.2020.127268
  • Farias, O. R. de; Cruz, J. M. F. de L.; Duarte, I. G.; Veloso, J. S.; Nascimento, L. C. Controle de fungos com óleo de eucalipto e transmissão de Fusarium sp. em sementes de Mimosa caesalpiniifolia. Pesquisa Florestal Brasileira, v.43, e202002144, p.1-9, 2023. https://doi.org/10.4336/2023.pfb.43e202002144
    » https://doi.org/10.4336/2023.pfb.43e202002144
  • Feng, Y. X.; Wang, Y.; Chen, Z. Y; Guo, S. S.; You, C. X.; Du, S. S. Efficacy of bornyl acetate and camphene from Valeriana officinalis essential oil against two storage insects. Environmental Science and Pollution Research, v.26, p.16157-16165, 2019. https://doi.org/10.1007/s11356-019-05035-y
    » https://doi.org/10.1007/s11356-019-05035-y
  • Ferrara, M.; Perrone, G.; Gallo, A. Recent advances in biosynthesis and regulatory mechanisms of principal mycotoxins. Current Opinion in Food Science, v.48, e100923, 2022. https://doi.org/10.1016/j.cofs.2022.100923
    » https://doi.org/10.1016/j.cofs.2022.100923
  • Ferreira, C. D.; Lang, G. H.; Lindemann, I. S.; Timm, N. S.; Hoffmann, J. F.; Ziegler, V.; Oliveira, M. Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chemistry , v.339, e127810, 2021. https://doi.org/10.1016/j.bioorg.2019.103043
    » https://doi.org/10.1016/j.bioorg.2019.103043
  • Ferreira, I.; Barros, L.; Abreu, R. M. V. Antioxidants in wild mushrooms. Current Medicinal Chemistry, v.16, p.1543-1560, 2009. https://doi.org/10.2174/092986709787909587
    » https://doi.org/10.2174/092986709787909587
  • Fleurat-Lessard, F. Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins - An update. Journal of Stored Products Research , v.71, p.22-40, 2017. https://doi.org/10.1016/j.jspr.2016.10.002
    » https://doi.org/10.1016/j.jspr.2016.10.002
  • Gaban, A. C.; Morelli, F.; Brisola, M. V.; Guarnieri, P. Evolução da produção de grãos e armazenagem: perspectivas do agronegócio brasileiro para 2024/25. Informe GEPEC. v.21, p.28-47, 2017. https://doi.org/10.48075/igepec.v21i1.15407
    » https://doi.org/10.48075/igepec.v21i1.15407
  • Gallo, A.; Ghilardelli, F.; Doupovec, B.; Faas, J.; Schatzmayr, D.; Masoero, F. Kinetics of gas production in the presence of Fusarium mycotoxins in rumen fluid of lactating dairy cows. JDS Communications, v.2, p.243-247, 2021. https://doi.org/10.3168/jdsc.2021-0100
    » https://doi.org/10.3168/jdsc.2021-0100
  • Gao, Q.; Qi, J.; Tan, Y.; Ju, J. Antifungal mechanism of Angelica sinensis essential oil against Penicillium roqueforti and its application in extending the shelf life of bread. International Journal of Food Microbiology , v.408, e110427, 2024. https://doi.org/10.1016/j.ijfoodmicro.2023.110427
    » https://doi.org/10.1016/j.ijfoodmicro.2023.110427
  • Garcia-Cela, E.; Kiaitsi, E.; Sulyok, M.; Krska, R.; Medina, A.; Damico, I. P.; Magan, N. Influence of storage environment on maize grain: CO2 production, dry matter losses and aflatoxins contamination. Food Additives & Contaminants, v.36, p.175-185, 2019. https://doi.org/10.1080/19440049.2018.1556403
    » https://doi.org/10.1080/19440049.2018.1556403
  • García-Díaz, M.; Patiño, B.; Vázquez, C.; Gil-Serna, J. A novel niosome-encapsulated essential oil formulation to prevent aspergillus flavus growth and aflatoxin contamination of maize grains during storage. Toxins, v.11, e646, 2019. https://doi.org/10.3390/toxins11110646
    » https://doi.org/10.3390/toxins11110646
  • Gil-Serna, J.; García-Díaz, M.; Vázquez, C.; González-Jaén, M. T.; Patiño, B. Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins. Food Microbiology, v.82, p.240-248, 2019. https://doi.org/10.1016/j.fm.2019.02.013
    » https://doi.org/10.1016/j.fm.2019.02.013
  • Giunti, G.; Palermo, D.; Laudani, F.; Algeri, G. M.; Campolo, O.; Palmeri, V. Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Industrial Crops and Products, v.142, e111869, 2019. https://doi.org/10.1016/j.indcrop.2019.111869
    » https://doi.org/10.1016/j.indcrop.2019.111869
  • Grijalva, I.; Skidmore, A. R.; Milne, M. A.; Olaya-Arenas, P.; Kaplan, I.; Foster, R. E.; Yaninek, J. S. Integrated pest management enhances biological control in a US midwestern agroecosystem by conserving predators and non-pest prey. Agriculture, Ecosystems & Environment, v.368, e109009, 2024. https://doi.org/10.1016/j.agee.2024.109009
    » https://doi.org/10.1016/j.agee.2024.109009
  • Gu, F.; Gong, B.; Gilbert, R. G.; Yu, W.; Li, E.; Li, C. Relations between changes in starch molecular fine structure and in thermal properties during rice grain storage. Food Chemistry , v.295, p.484-492, 2019. https://doi.org/10.1016/j.foodchem.2019.05.168
    » https://doi.org/10.1016/j.foodchem.2019.05.168
  • Hamel, D.; Rozman, V.; Liška, A. Storage of cereals in warehouses with or without Pesticides. Insects, v.11, e846, 2020. https://doi.org/10.3390/insects11120846
    » https://doi.org/10.3390/insects11120846
  • Hamidian, M.; Salehi, A.; Naghiha, R.; Dehnavi, M. M.; Mohammadi, H.; Nejad Mirfathi, M.; Mojarab-Mahboubkar, M. Biological activity of essential oils from Ferulago angulata and Ferula assa-foetida against food-related microorganisms (antimicrobial) and Ephestia kuehniella as a storage pest (insecticidal); an in vitro and in silico study. Fitoterapia, v.175, e105937, 2024. https://doi.org/10.1016/j.fitote.2024.105937
    » https://doi.org/10.1016/j.fitote.2024.105937
  • Hammoud, Z.; Abada, M. B.; Greige-Gerges, H.; Elaissari, A.; Jemâa, J. M. B. Insecticidal effects of natural products in free and encapsulated forms: An overview. Journal of Natural Pesticide Research, v.1, e100007, 2022. https://doi.org/10.1016/j.napere.2022.100007
    » https://doi.org/10.1016/j.napere.2022.100007
  • Harrison, C. Patenting natural products just got harder. Nature Biotechnology, v.32, p.403-404, 2014. https://doi.org/10.1038/nbt0514-403a
    » https://doi.org/10.1038/nbt0514-403a
  • Hasnain, S. M. M.; Hasnain, Md. S.; Nayak, A. K.; Natural polysaccharides: sources and extraction methodologies. In: Hasnain, Md. S.; Nayak, A. K. Natural polysaccharides in drug delivery and biomedical applications. Academic Press. 2019. Chapter 1, p.1-14. https://doi.org/10.1016/B978-0-12-817055-7.00001-7
    » https://doi.org/10.1016/B978-0-12-817055-7.00001-7
  • Hassan, H. A.; Genaidy, M. M.; Kamel, M. S.; Abdelwahab, S. F. Synergistic antifungal activity of mixtures of clove, cumin and caraway essential oils and their major active components. Journal of Herbal Medicine, v.24, e100399, 2020. https://doi.org/10.1016/j.hermed.2020.100399
    » https://doi.org/10.1016/j.hermed.2020.100399
  • Hazra, S.; Das, D.; Moulick, D.; Hossain, A. Endophytes: the treasure house of bioactive compounds with potential applications in sustainable agriculture and other sectors. In: Kumar, A.; Santoyo, G.; Singh, J. Biocontrol Agents for Improved Agriculture - Plant and Soil Microbiome. Academic Press. 2024. Chpter 20, p.477-506. https://doi.org/10.1016/B978-0-443-15199-6.00001-4
    » https://doi.org/10.1016/B978-0-443-15199-6.00001-4
  • Honda, M. Nutraceutical and pharmaceutical applications of carotenoids. In: Jacob-Lopes, E.; Queiroz, M.; Zepka, L. Pigments from microalgae handbook. Springer, Cham. 2020. Chapter.18, p.449-469. https://doi.org/10.1007/978-3-030-50971-2_18
    » https://doi.org/10.1007/978-3-030-50971-2_18
  • Ibrahim, M. A.; Griko, N.; Junker, M.; Bulla, L. A. Bacillus thuringiensis: A genomics and proteomics perspective. Bioengineered Bugs, v.1, p.31-50, 2010. https://doi.org/10.4161/bbug.1.1.10
    » https://doi.org/10.4161/bbug.1.1.10
  • INPI. Instituto Nacional da Propriedade Industrial. Brasil. Patentes. 2020. Available on: Available on: https://www.gov.br/inpi/pt-br/servicos/perguntas-frequentes/patentes Accessed on: May 2024.
    » https://www.gov.br/inpi/pt-br/servicos/perguntas-frequentes/patentes
  • Ileke, K. D.; Idoko, J. E.; Ojo, D. O.; Adesina, B. C. Evaluation of botanical powders and extracts from Nigerian plants as protectants of maize grains against maize weevil, Sitophilus zeamais (Motschulsky) [coleoptera: Curculionidae]. Biocatalysis and Agricultural Biotechnology, v.27, e101702, 2020. https://doi.org/10.1016/j.bcab.2020.101702
    » https://doi.org/10.1016/j.bcab.2020.101702
  • Iztayev, A.; Baibatyrov, T.; Mukasheva, T.; Muldabekova, B.; Yakiyayeva, M. Experimental studies of the baisheshek barley grain processed by the ion-ozone mixture. Tchê Química, v.17, p.239-258, 2020. https://doi.org/10.52571/ptq.v17.n35.2020.22_iztayev_pgs_239_258.pdf
    » https://doi.org/10.52571/ptq.v17.n35.2020.22_iztayev_pgs_239_258.pdf
  • Jafarzadeh, S.; Hadidi, M.; Forough, M.; Nafchi, A. M.; Khaneghah, A. M. The control of fungi and mycotoxins by food active packaging: A review. Critical Reviews in Food Science and Nutrition, v.63, p.6393-6411, 2023. https://doi.org/10.1080/10408398.2022.2031099
    » https://doi.org/10.1080/10408398.2022.2031099
  • Jiang, H.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Chemical composition of essential oils from leaf and bud of clove and their impact on the antifungal and mycotoxin inhibitory activities of clove oil-in-water nanoemulsions. Industrial Crops and Products , v.187, e115479, 2022. https://doi.org/10.1016/j.indcrop.2022.115479
    » https://doi.org/10.1016/j.indcrop.2022.115479
  • Jian, F. Lethal and mobile variation of stored product insects and mites under low temperatures. Journal of Stored Products Research , v.105, e102240, 2024. https://doi.org/10.1016/j.jspr.2023.102240
    » https://doi.org/10.1016/j.jspr.2023.102240
  • Kavallieratos, N. G.; Skourti, A.; Nika, E. P.; Mártonfi, P.; Spinozzi, E.; Maggi, F. Tanacetum vulgare essential oil as grain protectant against adults and larvae of four major stored-product insect pests. Journal of Stored Products Research , v.94, e101882, 2021. https://doi.org/10.1016/j.jspr.2021.101882
    » https://doi.org/10.1016/j.jspr.2021.101882
  • Ke, Y.; Ding, B.; Zhang, M.; Dong, T.; Fu, Y.; Lv, Q.; Ding, W.; Wang, X. Study on inhibitory activity and mechanism of chitosan oligosaccharides on Aspergillus flavus and Aspergillus fumigatus Carbohydrate Polymers, v.275, e118673, 2022. https://doi.org/10.1016/j.carbpol.2021.118673
    » https://doi.org/10.1016/j.carbpol.2021.118673
  • Kuyu, C. G.; Tola, Y. B.; Mohammed, A.; Mengesh, A.; Mpagalile, J. J. Evaluation of different grain storage technologies against storage insect pests over an extended storage time. Journal of Stored Products Research , v.96, e101945, 2022. https://doi.org/10.1016/j.jspr.2022.101945
    » https://doi.org/10.1016/j.jspr.2022.101945
  • Laca, A.; Mousia, Z.; Diaz, M.; Webb, C.; Pandiella, S. S. Distribution of microbial contamination within cereal grains. Journal of Food Engineering, v.72, p.332-338, 2006. https://doi.org/10.1016/j.jfoodeng.2004.12.012
    » https://doi.org/10.1016/j.jfoodeng.2004.12.012
  • Langenheim, J. H. Higher plant terpenoids: a phytocentric overview of their ecological roles. Journal of Chemical Ecology, v.20, p.1223-1280, 1994. https://doi.org/10.1007/BF02059809
    » https://doi.org/10.1007/BF02059809
  • Leach, A.; Pecenka, J.; Kaplan, I. Does IPPM bear fruit? Evaluating reduced-risk insecticide programmes on pests, pollinators and marketable yield. Journal of Applied Ecology, v.59, p.2993-3002, 2022. https://doi.org/10.1111/1365-2664.14294
    » https://doi.org/10.1111/1365-2664.14294
  • Lee, J. P.; Kang, M. G.; Lee, J. Y.; Oh, J. M.; Baek, S. C.; Leem, H. H.; Park, D.; Cho, M.-L.; Kim, H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorganic Chemistry, v.89, e103043, 2019. https://doi.org/10.1016/j.foodchem.2020.127810
    » https://doi.org/10.1016/j.foodchem.2020.127810
  • Li, X.-Y.; Si, F.-L.; Zhang, X.-X.; Zhang, Y.-J.; Chen, B. Characteristics of trypsin genes and their roles in insecticide resistance based on omics and functional analyses in the malaria vector Anopheles sinensis Pesticide Biochemistry and Physiology, v.201, e105883, 2024. https://doi.org/10.1016/j.pestbp.2024.1058
    » https://doi.org/10.1016/j.pestbp.2024.1058
  • Lichota, A.; Gwozdzinski, L.; Gwozdzinski, K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. European Journal of Medicinal Chemistry, v.176, p.68-91, 2019. https://doi.org/10.1016/j.ejmech.2019.04.075
    » https://doi.org/10.1016/j.ejmech.2019.04.075
  • Liu, Z.; Li, M.; Wang, S.; Huang, H.; Zhang, W. Sulfur-containing metabolites from marine and terrestrial fungal sources: Origin, structures, and bioactivities. Marine Drugs, v.20, p.1-18, 2022. https://doi.org/10.3390/md20120765
    » https://doi.org/10.3390/md20120765
  • Liu, J.; Deng, Y.; Zhao, Z.; Zhang, J.; Hua, J.; Luo, S. The chemical diversity of essential oils from galls of two Artemisia spp., and their insecticidal activity against the storage pest Callosobruchus chinensis Industrial Crops and Products , v.214, e118505, 2024. https://doi.org/10.1016/j.indcrop.2024.118505
    » https://doi.org/10.1016/j.indcrop.2024.118505
  • Loi, N. V.; Binh, P. T.; Thanh, K. T.; Ngoc, N. T. T. Study to determine the chemical constituents, antibacterial ability, and antioxidant activity of the red pepper (Piper Nigrum l.) essential oil in Gia Lai Province, Vietnam. Food Science and Technology , v.43, e28723, 2023. https://doi.org/10.5327/fst.28723
    » https://doi.org/10.5327/fst.28723
  • Los, A.; Ziuzina, D.; Bourke, P. Current and future technologies for microbiological decontamination of cereal grains. Journal of Food Science, v.83, p.1484-1493, 2018. https://doi.org/10.1111/1750-3841.14181
    » https://doi.org/10.1111/1750-3841.14181
  • Lopes, S. Z. B.; Monkolski, A.; Monkolski, J. G. de F.; Siqueira, D. J. S. Influência do óleo essencial de citronela na repelência e mortalidade de Sitophilus zeamais Scientific Electronic Archives, v.4, p.15-22, 2023. http://dx.doi.org/10.36560/16420231692
    » http://dx.doi.org/10.36560/16420231692
  • Lorini, I.; Krzyzanowski, F. C.; França-Neto, J. B.; Henning, A. A.; Henning, F. A. Manejo integrado de pragas de grãos e sementes armazenadas. Brasília: Embrapa, 2015. 86p.
  • Losic, D.; Korunic, Z. Diatomaceous earth, a natural insecticide for stored grain protection: recent progress and perspectives. In: Losic, D. Diatomaceous nanotechnology: progress and emerging applications. The Royal Society of Chemistry, 2018. Chapter 10, p.219-247. https://doi.org/10.1039/9781788010160-00219
    » https://doi.org/10.1039/9781788010160-00219
  • Lourenço, S. C.; Moldão-Martins, M.; Alves, V. D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules, v.24, p.1-25, 2019. https://doi.org/10.3390/molecules24224132
    » https://doi.org/10.3390/molecules24224132
  • Lu, Y.; Zhang, M.; Huang, D. Dietary organosulfur-containing compounds and their health-promotion mechanisms. Annual Review ofFood Science and Technology , v.13, p.287-313, 2022. https://doi.org/10.1146/annurev-food-052720-010127
    » https://doi.org/10.1146/annurev-food-052720-010127
  • Luchesi, L. A.; Paulus, D.; Busso, C.; Frata, M. T.; Oliveira, J. B. Chemical composition, antifungal and antioxidant activity of essential oils from Baccharis dracunculifolia and Pogostemon cablin against Fusarium graminearum Natural Product Research , v.36, p.849-852, 2022. https://doi.org/10.1080/14786419.2020.1802267
    » https://doi.org/10.1080/14786419.2020.1802267
  • Lutz, E.; Coradi, P. C. Applications of new technologies for monitoring and predicting grains quality stored: Sensors, internet of things, and artificial intelligence. Measurement, v.188, e110609, 2022. https://doi.org/10.1016/j.measurement.2021.110609
    » https://doi.org/10.1016/j.measurement.2021.110609
  • Luu-Dam, N. A.; Tabanca, N.; Estep, A. S.; Nguyen, D. H.; Kendra, P. E. Insecticidal and attractant activities of Magnolia citrata leaf essential oil against two major pests from Diptera: Aedes aegypti (Culicidae) and Ceratitis capitata (Tephritidae). Molecules, v.26, e2311, 2021. https://doi.org/10.3390/molecules26082311
    » https://doi.org/10.3390/molecules26082311
  • Manandhar, A.; Milindi, P.; Shah, A. An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture, v.8, e57, 2018. https://doi.org/10.3390/agriculture8040057
    » https://doi.org/10.3390/agriculture8040057
  • Mattos, A. P. M. N.; Krewer, A. M. A.; Eccel, C; Will, J. Uso de óleos essenciais para o controle de pragas do milho. Estrabão, v,2, p.139-147, 2021. https://doi.org/10.53455/re.v2i.17
    » https://doi.org/10.53455/re.v2i.17
  • Melo, A. L. de; Silva, S. B.; Albuquerque, J. Armazenamento, proteção de grãos e controle orgânico em pequenas propriedades. Belém: Edufra, 2018. 62p.
  • Mir, S. A.; Mir, M. B.; Shah, M. A.; Hamdani, A. M.; Sunooj, K. V.; Phimolsiripol, Y.; Khaneghah, A. M. New prospective approaches in controlling the insect infestation in stored grains. Journal of Asia-Pacific Entomology, v.26, e102058, 2023. https://doi.org/10.1016/j.aspen.2023.102058
    » https://doi.org/10.1016/j.aspen.2023.102058
  • Mng’ong’o, M. Assessment of maize and beans storage insect pest in major grain markets, Morogoro-Tanzania. Saudi Journal of Biological Sciences, v.30, e103491, 2023. https://doi.org/10.1016/j.sjbs.2022.103491
    » https://doi.org/10.1016/j.sjbs.2022.103491
  • Montoya-Martínez, A. C.; Valenzuela Ruiz, V.; Chávez-Luzanía, R. A.; Villa-Rodríguez, E. D.; Villalobos, S. d. l. S. Biological control agents for mitigating plant diseases. In New insights, trends, and challenges in the development and applications of microbial inoculants in agriculture. Developments in Applied Microbiology and Biotechnology. 2024. Chapter 4, p.27-35. https://doi.org/10.1016/B978-0-443-18855-8.00004-7
    » https://doi.org/10.1016/B978-0-443-18855-8.00004-7
  • Mordue, A. J.; Blackwell, A. Azadirachtin: An update. Journal of Insect Physiology, v.39, p.903-924, 1993. https://doi.org/10.1016/0022-1910(93)90001-8
    » https://doi.org/10.1016/0022-1910(93)90001-8
  • Moreira, M. D.; Melo, M. M.; Coimbra, J. M.; Reis, K. C.; Schwan, R. F.; Silva, C. F. Solid coffee waste as alternative to produce carotenoids with antioxidante and antimicrobial activities. Waste Management, v.82, p.93-99, 2018. https://doi.org/10.1016/j.wasman.2018.10.017
    » https://doi.org/10.1016/j.wasman.2018.10.017
  • Morrison, W. R.; Larson, N. L.; Brabec, D.; Zhang, A. Methyl benzoate as a putative alternative, environmentally friendly fumigant for the control of stored product insects. Journal of Economic Entomology, v.112, p.2458-2468, 2019. https://doi.org/10.1093/jee/toz179
    » https://doi.org/10.1093/jee/toz179
  • Mossa, A. T. H. Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology, v.9, p.354-378, 2016. https://doi.org/10.3923/jest.2016.354.378
    » https://doi.org/10.3923/jest.2016.354.378
  • Munkvold, G. P.; Proctor, R. H.; Moretti, A. Mycotoxin production in fusarium according to contemporary species concepts. Annual Review of Phytopathology, v.59, p.373-402, 2021. https://doi.org/10.1146/annurev-phyto-020620-102825
    » https://doi.org/10.1146/annurev-phyto-020620-102825
  • Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V. D. Essential oils and antifungal activity. Pharmaceuticals, v.10, e86, 2017. https://doi.org/10.3390/ph10040086
    » https://doi.org/10.3390/ph10040086
  • Nourbakhsh, F.; Lotfalizadeh, M.; Badpeyma, M.; Shakeri, A.; Soheili, V. From plants to antimicrobials: Natural products against bacterial membranes. Phytotherapy Research, v.36, p.33-52, 2022. https://doi.org/10.1002/ptr.7275
    » https://doi.org/10.1002/ptr.7275
  • Olinto, F. A.; Oliveira, V. S.; Nunes, M. S.; Silva, H. F.; Porcino, M. M.; Nascimento, L. C. Óleos essenciais no tratamento de sementes florestais nativas do semiárido brasileiro. Revista Principia, v.60, p.610-633, 2023. http://dx.doi.org/10.18265/1517-0306a2021id6299
    » http://dx.doi.org/10.18265/1517-0306a2021id6299
  • Oliveira, L. V.; Rolim, A. C. P.; Silva, G. F. da, Araújo, L. C. de, Braga, V. A. de L.; Coura, A. G. L. Changes in dietary habits related to the COVID-19 pandemic: a literature review. Brazilian Journal of Health Review, v.4, p.8464-8477, 2021.
  • Oliveira, R. V.; Sousa, A. H. de; Tamwing, G. da S.; Silva, M. C. da; Silva, M. C. da; Mota, B. B. Óleo essencial de Piper aduncum L.: toxicidade e sinergismo como estratégias de controle de Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae): uma revisão de literatura. Scientia Naturalis, v.5, p.925-941, 2023. https://doi.org/10.29327/269504.5.2-30
    » https://doi.org/10.29327/269504.5.2-30
  • Ooi, B. K.; Chan, K. G.; Goh, B. H.; Yap, W. H. The role of natural products in targeting cardiovascular diseases via nrf2 pathway: novel molecular mechanisms and therapeutic approaches. Frontiers in Pharmacology, v.15, e1308, 2018. https://doi.org/10.3389/fphar.2018.01308
    » https://doi.org/10.3389/fphar.2018.01308
  • Ootani, M. A.; Aguiar, R. W.; Ramos, A. C. C; Brito, D. R.; Silva, J. B; Cajazeira, J. P. Use of essential oils in agriculture. Journal of Biotechnology and Biodiversity, v.4, p.162-174, 2013. https://doi.org/10.20873/jbb.uft.cemaf.v4n2.ootani
    » https://doi.org/10.20873/jbb.uft.cemaf.v4n2.ootani
  • Pan, X.; Xiao, H.; Hu, X.; Liu, Z. L. Insecticidal activities of the essential oil of Rhynchanthus beesianus rhizomes and its constituents against two species of grain storage insects. Zeitschrift für Naturforschung C, v.78, p.83-89, 2022. https://doi.org/10.1515/znc-2022-0017
    » https://doi.org/10.1515/znc-2022-0017
  • Panigrahi, S.S.; Singh, C.B.; Fielke, J.; Zare, D. Modeling of heat and mass transfer within the grain storage ecosystem using numerical methods: A review. Drying Technology, v.38, p.1677-1697, 2020. https://doi.org/10.1080/07373937.2019.1656643
    » https://doi.org/10.1080/07373937.2019.1656643
  • Paul, A.; Radhakrishnan, M.; Anandakumar, S.; Shanmugasundaram, S.; Anandharamakrishnan, C. Disinfestation techniques for major cereals: A status report. Comprehensive Reviews in Food Science and Food Safety, v.19, p.1125-1155, 2020. https://doi.org/10.1111/1541-4337.12555
    » https://doi.org/10.1111/1541-4337.12555
  • Paul, A.; Visakh, N. U.; Pathrose, B.; Mori, N.; Baeshen, R. S.; Shawer, R. Exploring the chemical characterization and insecticidal activities of Curcuma angustifolia roxb. leaf essential oils against three major stored product insects. Saudi Journal of Biological Sciences , v.31, e103986, 2024. https://doi.org/10.1016/j.sjbs.2024.103986
    » https://doi.org/10.1016/j.sjbs.2024.103986
  • Penagos-Tabares, F.; Khiaosa-ard, R.; Faas, J.; Papst, F.; Egger-Danner, C.; Zebeli, Q. A 2-year study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds. Journal of Dairy Science, v.107, p.1124-1142, 2024. https://doi.org/10.3168/jds.2023-23476
    » https://doi.org/10.3168/jds.2023-23476
  • Peng, J.; Chen, Z.; Chen, X.; Zheng, R.; Lu, S.; Seyab, M.; Yang, F.; Li, Q.; Tang, Q. Insecticidal potential of a Consolida ajacis extract and its major compound (ethyl linoleate) against the diamondback moth, Plutella xylostella. Pesticide Biochemistry and Physiology , v.195, e105557, 2023. https://doi.org/10.1016/j.pestbp.2023.105557
    » https://doi.org/10.1016/j.pestbp.2023.105557
  • Pizzolitto, R. P.; Jacquat, A. G.; Usseglio, V. L.; Achimón, F.; Cuello, A. E.; Zygadlo, J. A.; Dambolena, J. S. Quantitative-structure-activity relationship study to predict the antifungal activity of essential oils against Fusarium verticillioides Food Control, v.108, e106836, 2019. https://doi.org/10.1016/j.foodcont.2019.106836
    » https://doi.org/10.1016/j.foodcont.2019.106836
  • Pratyusha, S. Phenolic compounds in the plant development and defense: An overview. In: Hasanuzzaman, M; Nahar, K. Plant stress physiology-perspectives in agriculture. IntechOpen. 2022. Cap.7, p.125-140. https://doi.org/10.5772/intechopen.102873
    » https://doi.org/10.5772/intechopen.102873
  • Qi, Z.; Tian, L.; Zhang, H.; Zhou, X.; Lei, Y.; Tang, F. Mycobiome mediates the interaction between environmental factors and mycotoxin contamination in wheat grains. Science of The Total Environment, v.928, e172494, 2024. https://doi.org/10.1016/j.scitotenv.2024.172494
    » https://doi.org/10.1016/j.scitotenv.2024.172494
  • Quasim, M. A.; Karn, A. K.; Paul, S.; Hmar, E. B. L.; Sharma, H. K. Herbal rodent repellent: A dependable and dynamic approach in defiance of synthetic repellent. Bulletin of the National Research Centre, v.47, e82, 2023. https://doi.org/10.1186/s42269-023-01055-4
    » https://doi.org/10.1186/s42269-023-01055-4
  • Radunz, M.; Hackbart, H. C. S.; Camargo, T. M.; Nunes, C. F. P.; Barros, F. A. P.; Magro, J. D.; Sanches Filho, P. J.; Gandra, E. A.; Radünz, A. L.; Zavareze, E. R. Antimicrobial potential of spray drying encapsulated thyme (Thymus vulgaris) essential oil on the conservation of hamburger-like meat products. International Journal of Food Microbiology , v.330, e108696, 2020. https://doi.org/10.1016/j.ijfoodmicro.2020.108696
    » https://doi.org/10.1016/j.ijfoodmicro.2020.108696
  • Rajendran, S. Grain storage: perspectives and problems. In: Chakraverty, A.; Mujumdar, A. S.; Raghavan G. S. V. Handbook of postharvest technology. CRC Press. 2003. Cap.8, p.183-214.
  • Remesh, A. V.; Babu, C. S. V. Fumigant and contact toxicities of individual and additive combinations of biorational-essential oils for control of rice weevil (Sitophilus oryzae). Natural Product Research , v.37, p.2748-2752, 2023. https://doi.org/10.1080/14786419.2022.21
    » https://doi.org/10.1080/14786419.2022.21
  • Rigopoulou, M.; Baliota, G. V.; Athanassiou, C. G. Persistence and efficacy of diatomaceous earth against stored product insects in semi-field trials. Crop Protection , v.174, e106416, 2023. https://doi.org/10.1016/j.cropro.2023.106416
    » https://doi.org/10.1016/j.cropro.2023.106416
  • Rizwan, M.; Atta, B.; Ali, M. Y.; Ashraf, I.; Arshad, M.; Tahir, M.; Rizwan, M.; Sabir, A. M.; Shehzadi, N.; Khalid, U. B.; Iqbal, S.; Pan, M-Z.; Liu, T-X. The comparison of interstitial relative humidity and temperatures of hermetic and polypropylene bag for wheat grain storage under different agro-climatic conditions of rice-wheat ecosystem of Pakistan: Effect on seed quality and protection against insect pests. Journal of Stored Products Research , v.96, e101936, 2022. https://doi.org/10.1016/j.jspr.2022.101936
    » https://doi.org/10.1016/j.jspr.2022.101936
  • Rodrigues, D. B.; Marques, M. C.; Hacke, A.; Loubet Filho, P. S.; Cazarin, C. B. B.; Mariutti, L. R. B. Trust your gut: Bioavailability and bioaccessibility of dietary compounds, Current Research in Food Science, v.5, p.228-233, 2022. https://doi.org/10.1016/j.crfs.2022.01.002
    » https://doi.org/10.1016/j.crfs.2022.01.002
  • Rodríguez, A.; Beato, M.; Usseglio, V. L.; Camina, J.; Zygadlo, J. A.; Dambolena, J. S.; Zunino, M. P. Phenolic compounds as controllers of Sitophilus zeamais: a look at the structure-activity relationship. Journal of Stored Products Research , v.99, e102038, 2022. https://doi.org/10.1016/j.jspr.2022.102038
    » https://doi.org/10.1016/j.jspr.2022.102038
  • Sánchez, G.; Aznar, R. Evaluation of natural compounds of plant origin for inactivation of enteric viroses. Food and Environmental Virology, v.7, p.183-187, 2015. https://doi.org/10.1007/s12560-015-9181-9
    » https://doi.org/10.1007/s12560-015-9181-9
  • Santos, N. C.; Silva, J. E.; Santos, A. C. C.; Dantas J. O.; Tavares, S. R. S. A.; Andrade, V. S.; Oliveira, S. D. D. S.; Blank, A. F.; Araújo, A. P. A; Bacci, L. Bioactivity of essential oils from Croton grewioides and its major compounds: Toxicity to soybean looper Chrysodeixis includens and selectivity to the predatory stink bug Podisus nigrispinus Environmental Science and Pollution Research International, v.30, p.18798-18809, 2023. https://doi.org/10.1007/s11356-022-23414-w
    » https://doi.org/10.1007/s11356-022-23414-w
  • Schmidt, M.; Zannini, E.; Arendt, E.K. Recent advances in physical post-harvest treatments for shelf-life extension of cereal crops. Foods, v.7, e45, 2018. https://doi.org/10.3390/foods7040045
    » https://doi.org/10.3390/foods7040045
  • Shah, M. A.; Manj, I. A.; Naseer, J.; Anjum, K.; Hafeez, S.; Ahmad, H. M.; Faridi, T. Padrões de danos de diferentes aves e espécies de roedores em armazenamentos de grãos em Bahawalpur, Paquistão. Revista de Ciências Agrícolas, v.5, p.28-37, 2023. https://doi.org/10.56520/asj.v5i2.270
    » https://doi.org/10.56520/asj.v5i2.270
  • Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, v.8, e246, 2019. https://doi.org/10.3390/foods8070246
    » https://doi.org/10.3390/foods8070246
  • Sharma, S.; Semwal, A. D.; Murugan, M. P.; Khan, M. A.; Wadikar, D. Grain storage and transportation management. In: Nayik, G. A.; Tufail, T.; Anjum, F. M.; Javed Ansari, M. Cereal grains: composition, nutritional attributes, and potential applications. CRC Press. 2023. Chapter14, p.269-296. https://doi.org/10.1201/9781003252023
    » https://doi.org/10.1201/9781003252023
  • Silva, A. O. da; Silva, A. O. da; Gomes, J. A.; Oliveira, R. C. de; Silva, D. A. S.; Viégas, I. de J. M. Grain storage in family agriculture: main problems and ways of storage in the northeast paraense region. Research, Society and Development , v.10, e36610111835, 2021. http://dx.doi.org/10.33448/rsd-v10i1.11835
    » http://dx.doi.org/10.33448/rsd-v10i1.11835
  • Singh, K. D.; Mobolade, A. J.; Bharali, R.; Sahoo, D.; Rajashekar, Y. Main plant volatiles as stored grain pest management approach: A review. Journal of Agriculture and Food Research, v.4, e100127, 2021. https://doi.org/10.1016/j.jafr.2021.100127
    » https://doi.org/10.1016/j.jafr.2021.100127
  • Smith, E. H. Tree spray oils. In: American Chemical Society. agricultural applications of petroleum products. Advances in Chemistry Series. 1952. Chapter 1, p.3-11. https://doi.org/10.1021/ba-1951-0007.ch001
    » https://doi.org/10.1021/ba-1951-0007.ch001
  • Sousa, P. A. S.; Neto, J.; Barbosa, J. V.; Peres, J.; Magro, A.; Barros, G.; Sousa, J. M.; Magalhães, F. D.; Mexia, A.; Aguiar, A. A. R. M.; Bastos, M. M. S. M. Novel approach for a controlled delivery of essential oils during long-term maize storage: Clove bud and pennyroyal oils efficacy to control Sitophilus zeamais, reducing grain damage and post-harvest losses. Insects, v.14, 366, 2023. https://doi.org/10.3390/insects14040366
    » https://doi.org/10.3390/insects14040366
  • Souza, I. P.; Ruffato, S. Cinética de secagem e qualidade de grãos de milho secados naturalmente. Research, Society and Development , v.10, e44010817334, 2021. http://dx.doi.org/10.33448/rsd-v10i8.17334
    » http://dx.doi.org/10.33448/rsd-v10i8.17334
  • Souza, W. F. de; Vargas, A. N.; Val, J. B. R. do; Freitas, A. de M. A.; Lorini, M. Control of temperature to suppress the population of Rhyzopertha dominica (F.) (Coleoptera, Bostrichidae) in a grain silo prototype. In: European Control Conference, 2013, Zurich. Proceedings. Zurich: European Control Association, p.4089-4093, 2013.
  • Sruthi, N. U.; Rao, P. S. Effect of processing on storage stability of millet flour: A review. Trends in Food Science & Technology, v.112, p.58-74, 2021. https://doi.org/10.1016/j.tifs.2021.03.043
    » https://doi.org/10.1016/j.tifs.2021.03.043
  • Střelková, T.; Jurkaninová, L.; Bušinová, A.; Nový, P.; Klouček, P. Essential oils in vapour phase as antifungal agents in the cereal processing chain. Trends in Food Science & Technology , v.143, e104293, 2024. https://doi.org/10.1016/j.tifs.2023.104293
    » https://doi.org/10.1016/j.tifs.2023.104293
  • Subramanyam, B.; Madamanchi, N.; Norwood, S. Effectiveness of insecto applied to shelled maize against stored-product insect larvae. Journal of Economic Entomology , v.91, p.280-286, 1998. https://doi.org/10.1093/jee/91.1.280
    » https://doi.org/10.1093/jee/91.1.280
  • Sulhath, T. A. A.; Visakh, N. U.; Pathrose, B.; George, S. B. Investigating the insecticidal properties of essential oils extracted from wild turmeric (Curcuma aromatica salisb) leaves waste against three key stored product pests. Sustainable Chemistry and Pharmacy, v,38, e101482, 2024. https://doi.org/10.1016/j.scp.2024.101482
    » https://doi.org/10.1016/j.scp.2024.101482
  • Sun, Y.; Huang, K.; Long, M.; Yang, S.; Zhang, Y. An update on immunotoxicity and mechanisms of action of six environmental mycotoxins. Food and Chemical Toxicology, v.163, e112895, 2022. https://doi.org/10.1016/j.fct.2022.112895
    » https://doi.org/10.1016/j.fct.2022.112895
  • Tanase, C.; Coșarcă, S.; Muntean, D-L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, v.24, 1182, 2019. https://doi.org/10.3390/molecules24061182
    » https://doi.org/10.3390/molecules24061182
  • Tanguy, A.; Deudon, O.; Crepon, K. Disponibilidade média de resfriamento para aeração de grãos na França nos últimos 20 anos. In: Conti, B.; Trematerra, P. editors. Anais do Livro de Resumos da 12ª Conferência do Grupo de Trabalho Proteção Integrada de Produtos Armazenados; Pisa, Itália. 3 a 6 de setembro de 2019 https://doi.org/10.3390/insects11090598
    » https://doi.org/10.3390/insects11090598
  • Tewari, H.; Kasana, V. K.; Jyothi, K. N.; Tewari, G. Efficacy of essential oils from three Mentha species against postharvest groundnut pest, Caryedon serratus (Olivier) (Coleoptera: Bruchidae). Journal of Natural Pesticide Research , v.7, e100063, 2024. https://doi.org/10.1016/j.napere.2023.100063
    » https://doi.org/10.1016/j.napere.2023.100063
  • Taroncher, M.; Fuentes, C.; Rodríguez-Carrasco, Y.; Ruiz, M.-J. Assessment of the genotoxic and mutagenic effects induced by T-2 mycotoxin in HepG2 cells. Toxicology, v.501, e153712, 2024. https://doi.org/10.1016/j.tox.2023.153712
    » https://doi.org/10.1016/j.tox.2023.153712
  • Thawabteh, A.; Juma, S.; Bader, M.; Karaman, D.; Scrano, L.; Bufo, S. A.; Karaman, R. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins, v.11, e656, 2019. https://doi.org/10.3390/toxins11110656
    » https://doi.org/10.3390/toxins11110656
  • Tohidi, B.; Rahimmalek, M.; Trindade, H. Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Industrial Crops and Products , v.134, p.89-99, 2019. https://doi.org/10.1016/j.indcrop.2019.02.038
    » https://doi.org/10.1016/j.indcrop.2019.02.038
  • Torre, R.; Pereira de Medeiros, E. A. D.; Pereira, C. S. B.; Menezes, A. C. R.; Fontes, I. S.; Pereira, L. V. R.; Paiva, D. H. F.; Santos, A. M. D.; Damasceno Junior, P. C.; Souza, M. A. A. D. Protection of cowpea seeds and toxicity against cowpea weevils by the essential oils from Lippia alba (verbenaceae) and Schinus terebinthifolius (anacardiaceae). Crop Protection , v.180, e106670, 2024. https://doi.org/10.1016/j.cropro.2024.106670
    » https://doi.org/10.1016/j.cropro.2024.106670
  • Tudu, M; Samantha, S. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. European Polymer Journal, v.184, e111801, 2023. https://doi.org/10.1016/j.eurpolymj.2022.111801
    » https://doi.org/10.1016/j.eurpolymj.2022.111801
  • Tushar, S. R; Alam, Md. F. B.; Zaman, S. Md.; Garza-Reyes, J. A; Bari, A. B. M. M; Karmaker, C. L. Analysis of the factors influencing the stability of stored grains: Implications for agricultural sustainability and food security. Sustainable Operations and Computers, v.4, p.40-52, 2023. https://doi.org/10.1016/j.susoc.2023.04.003
    » https://doi.org/10.1016/j.susoc.2023.04.003
  • Upmanyu, V.; Sapra, L.; Srivastava, R. K. Employment of selective pharmacologically active natural compounds in treatment and management of osteoporosis. Studies in Natural Products Chemistry, v.75, p.161-241, 2022. https://doi.org/10.1016/B978-0-323-91250-1.00005-7
    » https://doi.org/10.1016/B978-0-323-91250-1.00005-7
  • Vanegas-Estévez, T.; Duque, F. M.; Urbina, D. L.; Vesga, L. C.; Mendez-Sanchez, S. C. Design and elucidation of an insecticide from natural compounds targeting mitochondrial proteins of Aedes aegypti Pesticide Biochemistry and Physiology , v.198, e105721, 2024. https://doi.org/10.1016/j.pestbp.2023.105721
    » https://doi.org/10.1016/j.pestbp.2023.105721
  • Vilela, A. de O.; Faroni, L. R. A.; Sousa, A. H.; Pimentel, M. A. G.; Gomes, J. L. Toxicological and physiological effects of allyl isothiocyanate upon Callosobruchus maculatus Journal of Stored Products Research , v.87, e101625, 2020. https://doi.org/10.1016/j.jspr.2020.101625
    » https://doi.org/10.1016/j.jspr.2020.101625
  • Wang, H.; Yih, K.; Yang, C.; Huang, K. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils. Journal of Food and Drug Analysis, v.25, p.881-889, 2017. https://doi.org/10.1016/j.jfda.2017.05.007
    » https://doi.org/10.1016/j.jfda.2017.05.007
  • Wang, L.; Liu, B.; Jin, J.; Mal, L.; Dai, X.; Pan, L.; Liu, Y.; Zhao, Y.; Xing, F. The complex essential oils highly control the toxigenic fungal microbiome and major mycotoxins during storage of maize. Frontiers in Microbiology, v.10, e1643, 2019. https://doi.org/10.3389/fmicb.2019.01643
    » https://doi.org/10.3389/fmicb.2019.01643
  • Wang, Q.; Feng, J.; Han, F.; Wu, W.; Gao, S. Analysis and prediction of grain temperature from air temperature to ensure the safety of grain storage. International Journal of Food Properties, v.23, p.1200-1213, 2020. https://doi.org/10.1080/10942912.2020.1792922
    » https://doi.org/10.1080/10942912.2020.1792922
  • Wang, R.; Wang, Y.; Guo, W.; Zeng, M. Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation. Food Hydrocolloids, v.117, e106663, 2021. https://doi.org/10.1016/j.foodhyd.2021.106663
    » https://doi.org/10.1016/j.foodhyd.2021.106663
  • Wang, K.; Yan, Y.; Huang, L.; Sun, H.; Yu, N.; Liu, Z. Insecticidal activity of the spider neurotoxin PPTX-04 through modulating insect voltage-gated sodium channel. Pesticide Biochemistry and Physiology , v.201, e105853, 2024. https://doi.org/10.1016/j.pestbp.2024.105853
    » https://doi.org/10.1016/j.pestbp.2024.105853
  • Wyckhuys, K. A. G.; Akutse, K. S.; Amalin, D. M.; Araj, S. E.; Barrera, G.; Beltran, M. J. B.; Ben Fekih, I. B.; Calatayud, P. A.; Cicero, L.; Cokola, M. C.; Colmenarez, Y. C.; Dessauvages, K.; Dubois, T.; Durocher-Granger, L.; Espinel, C.; Fallet, P.; Fernández-Triana, J. L.; Francis, F.; Gómez, J.; Haddi, K.; Hadi, B. A. R. Global scientific progress and shortfalls in biological control of the fall armyworm Spodoptera frugiperda Biological Control, v.191, e105460, 2024. https://doi.org/10.1016/j.biocontrol.2024.105460
    » https://doi.org/10.1016/j.biocontrol.2024.105460
  • Xiang, F.; Zhao, Q.; Zhao, K.; Pei, H.; Tao, F. The efficacy of composite essential oils against aflatoxigenic fungus Aspergillus flavus in maize. Toxins, v.12, e562, 2020. https://doi.org/10.3390/toxins12090562
    » https://doi.org/10.3390/toxins12090562
  • Xie, J. H.; Jin, M. L.; Morris, G. A; Zha, X. Q.; Chen, H. Q.; Yi, Y.; Li, J. E; Wang, Z. J.; Gao, J.; Nie, S. P.; Shang, P.; Xie, M. Y. Advances on bioactive polysaccharides from medicinal plants. Critical Reviews in Food Science and Nutrition , v.29, p.60-84, 2016. https://doi.org/10.1080/10408398.2015.1069255
    » https://doi.org/10.1080/10408398.2015.1069255
  • Yanagawa, A.; Tomaru, M.; Kajiwara, A.; Nakajima, H.; Quemener, E. D. L.; Steyer, J. P.; Mitani, T. Impact of 2.45 GHz Microwave irradiation on the fruit fly, Drosophila melanogaster. Insects, v.11, e598, 2020. https://doi.org/10.3390/insects11090598
    » https://doi.org/10.3390/insects11090598
  • Yang, D.; Park, S. Y.; Park, Y. S.; Eun, H.; Lee, S. Yu. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, v.38, p.745-765, 2020. https://doi.org/10.1016/j.tibtech.2019.11.007
    » https://doi.org/10.1016/j.tibtech.2019.11.007
  • Ygit, E. Development of an expression for the volume of off-centered conical pile inside a cylindrical silo. Measurement, v.146, p.903-911, 2019. https://doi.org/10.1016/j.measurement.2019.07.036
    » https://doi.org/10.1016/j.measurement.2019.07.036
  • Yubonmhat, K.; Chinwong, S.; Nattawoot, M.; Saowadee, N.; Youngdee, W. Cellular water and proton relaxation times of Thai rice kernels during grain development and storage. Journal of Cereal Science, v.88, p.65-70, 2019. https://doi.org/10.1016/j.jcs.2019.05.005
    » https://doi.org/10.1016/j.jcs.2019.05.005
  • Ziegler, V.; Paraginski, R. T.; Ferreira, C. D. Grain storage systems and effects of moisture, temperature and time on grain quality - A review. Journal of Stored Products Research , v.91, e101770, 2021. https://doi.org/10.1016/j.jspr.2021.101770
    » https://doi.org/10.1016/j.jspr.2021.101770
  • Ziyat, H.; Naciri Bennani, M.; Arif, S.; Houssaini, J.; Hajjaj, H. Fungicide formulation based on Thyme essential oil and clay for wheat protection. Research on Chemical Intermediates, v.49, p.2769-2792, 2023. https://doi.org/10.1007/s11164-023-05013-7
    » https://doi.org/10.1007/s11164-023-05013-7
  • Złotek, U.; Szymanowska, U.; Jakubczyk, A.; Sikora, M.; Świeca, M. Effect of arachidonic and jasmonic acid elicitation on the content of phenolic compounds and antioxidant and anti-inflammatory properties of wheatgrass (Triticum aestivum, L.). Food Chemistry , v.288, p.256-261, 2019. https://doi.org/10.1016/j.foodchem.2019.02.124
    » https://doi.org/10.1016/j.foodchem.2019.02.124
  • 1 Research developed at Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, MG, Brazil

Supplementary documents

  • There are no supplementary data available from the research.

Financing statement

  • The authors declare that there were no funding sources for the development of this article.

Edited by

Editors: Ítalo Herbet Lucena Cavalcante & Walter Esfrain Pereira

Data availability

There are no supplementary data available from the research.

Publication Dates

  • Publication in this collection
    09 Sept 2024
  • Date of issue
    Jan 2025

History

  • Received
    29 Oct 2023
  • Accepted
    06 July 2024
  • Published
    29 July 2024
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com