Acessibilidade / Reportar erro

A tritrophic interaction at the Brazilian triple frontier: new record of parasitism on Conocephalus saltator (Sausurre, 1859) (Orthoptera, Tettigoniidae)

ABSTRACT

We report for the first time a tritrophic relationship (host-parasitoid-hyperparasitoid) among Conocephalus saltator (Sausurre, 1859) (Orthoptera, Tettigoniidae), Ormia cfr. crespoi Tavares, 1965 (Diptera, Tachinidae), and Perilampus sp. (Hymenoptera, Perilampidae). Specimens of C. saltator were collected at the Parque Nacional do Iguaçu (Foz do Iguaçu, Paraná, Brazil) and reared in the laboratory, in order to detect eventual parasitoids. We collected and reared 904 katydids, with 113 of them parasitized, producing 123 fly puparia, and 18 puparia that developed to adults of Ormia cfr. crespoi. We also recorded the emergence of four hyperparasitoid wasps, Perilampus sp., from the fly puparia.

Keywords:
Katydid; Ormia; Perilampus; Planidium; Tachinid

A parasitoid is an organism whose larval stage feeds on a single host, killing it as a result of its development (Eggleton and Belshaw, 1993Eggleton, P., Belshaw, R., 1993. Comparisons of dipteran, hymenopteran and coleopteran parasitoids: provisional phylogenetic explanations. Biol. J. Linn. Soc. Lond. 48, 213–226. https://doi.org/10.1006/bijl.1993.1015.; Wajnberg et al. 2008Wajnberg, E., Bernstein, C., Van Alphen, J., 2008. Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications. Blackwell, Oxford.). The successful development of the parasitoid relies on overcoming complex barriers such as finding, evaluating host quality, and overcoming defensive behaviours and the immune response of the hosts (Brodeur and Boivin, 2004Brodeur, J., Boivin, G., 2004. Functional ecology of immature parasitoids. Annu. Rev. Entomol. 49, 27–49. https://doi.org/10.1146/annurev.ento.49.061703.153618.). Some parasitoids develop on other parasitoids, constituting multitrophic systems that may include several levels; thus, parasitoids may be referred to as primary, secondary and even tertiary – all levels above the second being considered hyperparasitoids (Gauld and Bolton, 1988Gauld, I.D., Bolton, B., 1988. The Hymenoptera. Oxford University Press, London.; Gordh et al., 1999Gordh, G., Legner, E.F., Caltagirone, L.E., 1999. Biology of parasitic Hymenoptera. In: Bellows, T.S., Fisher, T.W. (Eds.), Handbook of Biological Control. Academic Press, London, pp. 355–381.). In this relationship, although only the parasitism of the secondary host can occur, the hyperparasitoid only completes its development if the primary host is also present (Smith, 1912Smith, H.S., 1912. The chalcidoid Genus Perilampus and its Relations to the Problem of Parasite Introduction, USDA, Washington, DC. Technical Series, Bureau of Entomology., 1958Smith, R.W., 1958. Parasites of nymphal and adult grasshoppers (Orthoptera: Acrididae) in western Canada. Can. J. Zool. 36, 217–262. https://doi.org/10.1139/z58-022.
https://doi.org/10.1139/z58-022...
). The ecological and evolutionary relevance of parasitoids is well established (see e.g. Santos and Quicke, 2011Santos, A.M., Quicke, D.L., 2011. Large‐scale diversity patterns of parasitoid insects. Entomol. Sci. 14, 371–382. https://doi.org/10.1111/j.1479-8298.2011.00481.x.), as they are key components of terrestrial biota (e.g. LaSalle and Gauld, 1991LaSalle, J., Gauld, I.D., 1991. Parasitic Hymenoptera and the biodiversity crisis. Redia (Firenze) 74, 315–334.), trophically interact with several other organisms (e.g. Lewis et al., 2002Lewis, O.T., Memmott, J., Lasalle, J., Lyal, C.H.C., Whitefoord, C., Godfray, C.J., 2002. Structure of a diverse tropical forest insect–parasitoid community. J. Anim. Ecol. 71, 855–873. https://doi.org/10.1046/j.1365-2656.2002.00651.x.), and are able to regulate the population size of several arthropods (Hassell, 2000Hassell, M.P., 2000. Host-parasitoid population dynamics. J. Anim. Ecol. 69, 543–566. https://doi.org/10.1046/j.1365-2656.2000.00445.x.), which led to their substantial use as agents of biological control (e.g. Wang et al., 2019Wang, Z.-Z., Liu, Y.-Q., Shi, M., Huang, J.-H., Chen, X.-X., 2019. Parasitoid wasps as effective biological control agents. J. Integr. Agric. 18, 705–715. https://doi.org/10.1016/S2095-3119(18)62078-7.).

A significant portion of known insect parasitoids belong to the orders Diptera and Hymenoptera (Waage and Hassell, 1982Waage, J.K., Hassell, M.P., 1982. Parasitoids as biological control agents - a fundamental approach. Parasitology 84, 241–268. https://doi.org/10.1017/S003118200005366X.
https://doi.org/10.1017/S003118200005366...
; Hassell and Waage, 1984Hassell, M.P., Waage, J.K., 1984. Host-parasitoid population interactions. Annu. Rev. Entomol. 29, 89–114. https://doi.org/10.1146/annurev.en.29.010184.000513.). In Diptera, parasitoidism occurs mostly within Tachinidae, a family with about 8,500 species that are exclusively parasitoids of other arthropods, with varying degrees of host specificity (Wood and Zumbado, 2010Wood, M., Zumbado, M.A., 2010. Tachinidae. In: Brown, B.V., Borkent, A., Cumming, J.M., Wood, D.M., Woodley, N.E., Zumbado, M.A. (Eds.), Manual of Central American Diptera. Vol. 2. NRC Research Press, Ottawa, pp. 1343–1417.), including the tribe Ormiini (Lehmann, 2003Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091.). This tribe of Tachininae, with 71 species (O’Hara et al., 2020O’Hara, J.E., Henderson, S.J., Wood, D.M., 2020. Preliminary Checklist of the Tachinid of the World. Version 2.1. Available in: http://www.nadsdiptera.org/Tach/WorldTachs/Checklist/Tachchlist_ver2.1.pdf (accessed 20 October 2021).
http://www.nadsdiptera.org/Tach/WorldTac...
), are parasitoids of Ensifera (Orthoptera) as an ancestral trait (Lehmann, 2003Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091.). Only eleven species of Ormiini have their hosts formally recorded to date (reviewed in Lehmann, 2003Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091.).

The species of Ormiini are unusual in that they are crepuscular/nocturnal. Females are attracted by singing male Ensifera, by phonotaxis, and lay a large number of planidial larvae nearby the potential host (Cade, 1975Cade, W.H., 1975. Acoustically orienting parasoitoids: fly phonotaxis to cricket song. Science 190, 1312–1313. https://doi.org/10.1126/science.190.4221.1312.; Adamo et al., 1995Adamo, S.A., Robert, D., Hoy, R.R., 1995. Effects of a tachinid parasitoid, Ormia ochracea, on the behaviour and reproduction of its male and female field cricket hosts (Gryllus spp). J. Insect Physiol. 41, 269–277. https://doi.org/10.1016/0022-1910(94)00095-X.). The planidium then enters the host body, in which 1-2 larvae usually complete the development (Vincent and Bertram, 2009Vincent, C.M., Bertram, S.M., 2009. The parasitoid fly Ormia ochracea (Diptera: Tachinidae) can use juvenile crickets as hosts. Fla. Entomol. 92, 598–600. https://doi.org/10.1653/024.092.0411.), attaching themselves to a tracheal funnel in the host body wall and killing the host at the time of pupariation (Cade, 1975Cade, W.H., 1975. Acoustically orienting parasoitoids: fly phonotaxis to cricket song. Science 190, 1312–1313. https://doi.org/10.1126/science.190.4221.1312.; Adamo et al., 1995Adamo, S.A., Robert, D., Hoy, R.R., 1995. Effects of a tachinid parasitoid, Ormia ochracea, on the behaviour and reproduction of its male and female field cricket hosts (Gryllus spp). J. Insect Physiol. 41, 269–277. https://doi.org/10.1016/0022-1910(94)00095-X.). Regarding Ormia Robineau-Desvoidy, 1830, five out of the 27 species have known hosts, two of them associated with Conocephalinae (Tettigoniidae), two with Gryllidae, and one mainly with Gryllotalpidae, the latter a derived trait within Ormiini (Lehmann, 2003Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091.). Reports suggest that Ormia species can have a wide, but phylogenetically restricted, host range (Lehmann, 2003Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091.). Concerning the interaction between Conocephalinae and Ormia, Ormia brevicornis Townsend, 1919 has been recorded from two species of Neoconocephalus Karny, 1907, and Ormia lineifrons Sabrosky, 1953 from one species of Neoconocephalus and four species of Orchelimum Serville, 1838 (Lehmann, 2003Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091.). No information on host range or interactions between Ormia species and their hosts was presented after Lehmann’s (2003)Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091. review, aside from data on Ormia ochracea (Bigot, 1889) and Ormia depleta (Wiedemann, 1830), which are widely studied species. Additional information on the parasitoidism of Tettigoniidae by other Tachinidae is provided by Frisch (1936)Frisch, J.A., 1936. Perilampus, a secondary parasite on sarcophagids and tachinids parasitic on katydids and long-horned grasshoppers. Psyche (Camb., Mass.) 43, 84–85., Young (1977)Young, A.M., 1977. New record of Neotropical katydid Celidophylla albimacula (Orthoptera: Tettigoniidae) and parasitism, from Costa Rica. Entomol. News 88, 210–211., Arnaud (1978)Arnaud, P.H., 1978. A Host-parasite Catalog of North American Tachinidae (Diptera). USDA, Washington DC., Cantrell (1986)Cantrell, B.K., 1986. An update host catalogue for the Australian Tachinidae (Diptera). Aust. J. Entomol. 25, 255–265., Allen (1995)Allen, G.R., 1995. The biology of the phonotactic parasitoid, Homotrixa sp. (Diptera: Tachinidae), and its impact on the survival of male Sciarasaga quadrata (Orthoptera: Tettigoniidae) in the field. Ecol. Entomol. 20, 103–110. https://doi.org/10.1111/j.1365-2311.1995.tb00435.x., Shapiro (1995)Shapiro, L., 1995. Parasitism of Orchelimum katydids (Orthoptera: Tettigoniidae) by Ormia lineifrons (Diptera: Tachinidae). Fla. Entomol. 78, 615–616., Allen and Pape (1996)Allen, G.R., Pape, T., 1996. Description of female and biology of Blaesoxipha ragg Pape (Diptera: Sarcophagidae), a parasitoid of Sciarasaga quadrata Rentz (Orthoptera: Tettigoniidae) in Western Australia. Aust. J. Entomol. 35, 147–151. https://doi.org/10.1111/j.1440-6055.1996.tb01379.x., Barraclough and Allen (1996)Barraclough, D.A., Allen, G.R., 1996. Two new species of Homotrixa Villeneuve (Diptera: Tachinidae: Ormiini) from Southwestern Australia, with data on biology and ecology. Aust. J. Entomol. 35, 135–145. https://doi.org/10.1111/j.1440-6055.1996.tb01377.x., Lakes-Harlan et al. (2007)Lakes-Harlan, R., Jacobs, K., Allen, G.R., 2007. Comparison of auditory sense organs in parasitoid Tachinidae (Diptera) hosted by Tettigoniidae (Orthoptera) and homologous structures in a non-hearing Phoridae (Diptera). Zoomorphology 126, 229–243. https://doi.org/10.1007/s00435-007-0043-3., Nihei and Toma (2010)Nihei, S., Toma, R., 2010. Taxonomic notes on Borgmeiermyia Townsend (Diptera, Tachinidae) with the first host record for the genus. ZooKeys 42, 101–110. https://doi.org/10.3897/zookeys.42.190., Tachi (2011)Tachi, T., 2011. Three new species of Exorista Meigen (Diptera: Tachinidae), with a discussion of the evolutionary pattern of host use in the genus. J. Nat. Hist. 45, 1165–1197., Tschorsnig (2017)Tschorsnig, H.P., 2017. Preliminary Host Catalogue of Palaearctic Tachinidae (Diptera). Available in: https://www.uoguelph.ca/nadsfly/Tach/WorldTachs/CatPalHosts/Cat_Pal_tach_hosts_Ver1.pdf (accessed 20 October 2021).
https://www.uoguelph.ca/nadsfly/Tach/Wor...
, Inclán et. al. (2018)Inclán, D.J., O’Hara, J.E., Stireman 3rd, J.O., Shima, H., Pohjoismäki, J., Giudice, G.L., Cerretti, P., 2018. The monophyly of the Glaurocarini (Diptera: Tachinidae: Tachininae) with the description of a new species of Semisuturia from Australia. Insect Syst. Evol. 49, 1–22. https://doi.org/10.1163/1876312X-48022157., Toma and Olivier (2018)Toma, R., Olivier, R.S., 2018. Paxiximyia sulmatogrossensis, a new genus and species of Tachinidae (Diptera) reared from Urucumania borellii (Giglio-Tos, 1897) (Phasmatodea: Pseudophasmatidae) collected in the state of Mato Grosso do Sul, Brazil. Rev. Bras. Entomol. 62, 71–76. https://doi.org/10.1016/j.rbe.2017.10.004..

Three quarters of parasitoid species are found within the Hymenoptera (Belshaw et al., 2003Belshaw, R., Grafen, A., Quicke, D.L., 2003. Inferring life history from ovipositor morphology in parasitoid wasps using phylogenetic regression and discriminant analysis. Zool. J. Linn. Soc. 139, 213–228. https://doi.org/10.1046/j.1096-3642.2003.00078.x.), mostly in the superfamilies Chalcidoidea, Cynipoidea, Ichneumonoidea, Ceraphronoidea and Trigonalyoidea, besides more isolated occurrences in Proctotrupoidea (Muesebeck, 1977Muesebeck, C.F.W., 1977. The Parasitic Wasp of the Genus Macroteleia Westwood of the New World (Hymenoptera, Proctotrupoidea, Scelionidae). USDA, Washington, DC. (Technical Bulletin, 1565).; Gauld and Bolton, 1988Gauld, I.D., Bolton, B., 1988. The Hymenoptera. Oxford University Press, London.). Chalcidoidea, a remarkably speciose lineage within Hymenoptera, encompasses Perilampidae, a small family with about 300 species sorted into 17 genera (Noyes, 2019Noyes, J.S., 2019. Universal Chalcidoidea Database. Available in: http://www.nhm.ac.uk/chalcidoids (accessed 23 February 2023).
http://www.nhm.ac.uk/chalcidoids...
). Perilampus Latreille, 1809 is the only genus of the family for which biological associations are known to date (Noyes, 2019Noyes, J.S., 2019. Universal Chalcidoidea Database. Available in: http://www.nhm.ac.uk/chalcidoids (accessed 23 February 2023).
http://www.nhm.ac.uk/chalcidoids...
). The species of this genus are primary parasitoids of Coleoptera, Neuroptera, and other Hymenoptera, and secondary parasitoids (hyperparasitoids) of Hymenoptera (Braconidae and Ichneumonidae) and Diptera (Sarcophagidae and Tachinidae), which are, in this case, primary parasitoids of Lepidoptera and Orthoptera (Smith, 1917Smith, H.S., 1917. The habit of leaf-oviposition among the parasitic Hymenoptera. Psyche (Camb., Mass.) 24, 63–68. https://doi.org/10.1155/1917/52524.; Léonide and Léonide, 1969Léonide, J., Léonide, J.C., 1969. Insectes parasites et prédateurs des Diptères acridiophages: parasites occasionnels des Orthoptères en Provence. Bull. Soc. Entomol. Fr. 74, 21–32. https://doi.org/10.3406/bsef.1969.21038.; Heraty and Darling, 1984Heraty, J.M., Darling, D.C., 1984. Comparative morphology of the planidial larvae of Eucharitidae and Perilampidae (Hymenoptera: chalcidoidea). Syst. Entomol. 9, 309–328. https://doi.org/10.1111/j.1365-3113.1984.tb00056.x.). There are, however, reports of planidial larvae of Perilampus on orthopteroid insects (Kelly, 1914Kelly, E.O.G., 1914. A new sarcophagid parasite of grasshoppers. J. Agric. Res. 6, 435–446.; Ford, 1922Ford, N., 1922. An undescribed planidium of Perilampus from Conocephalus (Hym.). Can. Entomol. 54, 199–204.; Frisch, 1936Frisch, J.A., 1936. Perilampus, a secondary parasite on sarcophagids and tachinids parasitic on katydids and long-horned grasshoppers. Psyche (Camb., Mass.) 43, 84–85.; Smith, 1944Smith, R.W., 1944. Observations on parasites of some Canadian grasshoppers. Can. Entomol. 2, 28–33. https://doi.org/10.4039/Ent7628-2.; Smith and Finlayson, 1950Smith, R.W., Finlayson, T.U., 1950. Larvae of dipterous parasites of nymphal and adult grasshoppers. Can. J. Res. 28, 81–117. https://doi.org/10.1139/cjr50d-007.; Howitt, 1951Howitt, A.J., 1951. The Biology of Tephromyiella Atlantis (Aid.), a Parasite of Nymphal an Adult Grasshopper. Available in: https://scholarworks.montana.edu/xmlui/bitstream/handle/1/3798/31762001565769.pdf (accessed 20 October 2021).
https://scholarworks.montana.edu/xmlui/b...
; Smith, 1958Smith, R.W., 1958. Parasites of nymphal and adult grasshoppers (Orthoptera: Acrididae) in western Canada. Can. J. Zool. 36, 217–262. https://doi.org/10.1139/z58-022.
https://doi.org/10.1139/z58-022...
; Blackith, 1967Blackith, R.E., 1967. A hymenopterous primary parasite of Morabine grasshoppers. Aust. J. Entomol. 15, 93–102. https://doi.org/10.1071/ZO9670093.). Smith (1958)Smith, R.W., 1958. Parasites of nymphal and adult grasshoppers (Orthoptera: Acrididae) in western Canada. Can. J. Zool. 36, 217–262. https://doi.org/10.1139/z58-022.
https://doi.org/10.1139/z58-022...
, for instance, noted the presence of planidial larvae of Perilampus in 22 Orthoptera species within the families Acrididae, Gryllidae, and Tettigoniidae. Regarding more specifically the association with katydids, Ford (1922)Ford, N., 1922. An undescribed planidium of Perilampus from Conocephalus (Hym.). Can. Entomol. 54, 199–204. reported on individuals of Conocephalus fasciatus (De Geer, 1773) housing planidial larvae, apparently of Perilampus hyalinus Say, 1829, in Canada; however, he stated that it was unlikely that C. fasciatus could be the actual host of P. hyalinus and that the wasp probably was searching for its primary host within the body of the katydid. This strategy of waiting for the target host to parasitize was described for P. hyalinus by Smith (1912)Smith, H.S., 1912. The chalcidoid Genus Perilampus and its Relations to the Problem of Parasite Introduction, USDA, Washington, DC. Technical Series, Bureau of Entomology. for a tritrophic interaction involving Hyphantria Harris, 1841 caterpillars.

Twelve dipteran species are assigned as primary hosts of Perilampus, five within Sarcophagidae and seven within Tachinidae (Noyes, 2019Noyes, J.S., 2019. Universal Chalcidoidea Database. Available in: http://www.nhm.ac.uk/chalcidoids (accessed 23 February 2023).
http://www.nhm.ac.uk/chalcidoids...
). Among the dipteran species that host larvae of Perilampus, two species were indirectly associated with katydids. Allen and Pape (1996)Allen, G.R., Pape, T., 1996. Description of female and biology of Blaesoxipha ragg Pape (Diptera: Sarcophagidae), a parasitoid of Sciarasaga quadrata Rentz (Orthoptera: Tettigoniidae) in Western Australia. Aust. J. Entomol. 35, 147–151. https://doi.org/10.1111/j.1440-6055.1996.tb01379.x. describe, although indirectly, Perilampus associated with Blaesoxipha Loew, 1861 (Diptera: Sarcophagidae) obtained from the katydid Sciarasaga quadrata Rentz, 1993 (Tettigoniidae: Austrosaginae). Frisch (1936)Frisch, J.A., 1936. Perilampus, a secondary parasite on sarcophagids and tachinids parasitic on katydids and long-horned grasshoppers. Psyche (Camb., Mass.) 43, 84–85. reared Perilampus from puparia of Tachinidae and Sarcophagidae parasitoids of katydids; although this author stated that he could not observe the emergence of the flies directly from the katydids and emergence of Perilampus as well, he postulated a possible association of Perilampus with Senotainia trilineata (Wulp, 1890) (Diptera: Sarcophagidae) reared in cells provisioned with two species of Conocephalinae: Neoconocephalus ensiger (Harris, 1841), and Conocephalus (Anisoptera) attenuatus (Scudder, 1869).

Studies on parasitoidism are strongly precluded by the Linnean (Brown and Lomolino, 1998Brown, J.H., Lomolino, M.V., 1998. Biogeography, 2nd ed. Sinauer, Sunderland.) and Wallacean (Lomolino, 2004Lomolino, M.V., 2004. Conservation biogeography. In: Lomolino, M.V., Heaney, L.R. (Eds.), Frontiers of Biogeography. Sinauer, Sunderland, pp. 293–296.) shortfalls, and even by the recently proposed Haeckelian shortfall (i.e. the lack of knowledge regarding the semaphoronts of species; see Faria et al., 2021Faria, L.R.R., Pie, M.R., Salles, F.F., Soares, E.D.G., 2021. The Haeckelian shortfall or the tale of the missing semaphoronts. J. Zool. Syst. Evol. Res. 59, 359–369. https://doi.org/10.1111/jzs.12435.), so that many interactions remain unknown and/or undescribed. We could also consider that our ignorance of interactions itself are part of the Eltonian shortfall, i.e., the missing information about species interactions (Hortal et al., 2015Hortal, J., de Bello, F., Diniz-Filho, J.A.F., Lewinsohn, T.M., Lobo, J.M., Ladle, R.J., 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400.).

To our knowledge, there are no previous records that specifically describe a host-parasitoid-hyperparasitoid multitrophic interaction involving Conocephalus Thunberg, 1815 (Orthoptera, Tettigoniidae, Conocephalinae), Ormia (Diptera, Tachinidae), and Perilampus (Hymenoptera, Perilampidae), including observation and detection of the species directly from reared individuals. Therefore, we report here for the first time both interactions among this host-parasitoid-hyperparasitoid system.

Specimens of Conocephalus saltator (Sausurre, 1859) were collected between September 2019 and February 2020, at the Parque Nacional do Iguaçu, Foz do Iguaçu, Paraná, Brazil (25.6299ºS, 54.4630ºW). This forest remnant is the largest fragment of Atlantic Forest in southern Brazil (Ribeiro et al., 2009Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., Hirota, M.M., 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021.; Paviolo et al., 2016Paviolo, A., De Angelo, C., Ferraz, K.M.P.M.B., Morato, R.G., Martinez Pardo, J., Srbek-Araujo, A.C., Beisiegel, B., Lima, F., Sana, D., Xavier da Silva, M., Velázquez, M.C., Cullen, L., Crawshaw Junior, P., Jorge, M.L.S.P., Galetti, P.M., Di Bitetti, M.S., Paula, R.C., Eizirik, E., Aide, T.M., Cruz, P., Perilli, M.L.L., Souza, A.S.M.C., Quiroga, V., Nakano, E., Ramírez Pinto, F., Fernández, S., Costa, S., Moraes Junior, E.A., Azevedo, F., 2016. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147. https://doi.org/10.1038/srep37147.), comprising both Seasonal Semidecidual and Mixed Ombrophilous Forests (Cervi and Borgo, 2007Cervi, A.C., Borgo, M., 2007. Epífitos vasculares no Parque Nacional do Iguaçu, Paraná (Brasil). Levantamento preliminar. Fontqueria 55, 415–422.).

The katydids were collected by diurnal and nocturnal searching, through aural and visual localization, and with the aid of flashlights, sweeping and beating entomological nets. After collected, individuals were transported to the laboratory, individually kept in plastic containers (10 cm height x 15 cm diameter) and reared under controlled temperature (~ 25°C), relative humidity (~ 70%), and light/dark period of 10/12h, with fish food flakes and water ad libitum until their death. When puparia were found, each puparium was removed and placed in a small plastic container until the emergence of the adult parasitoid.

Identification of Ormia cfr. crespoi was based on the keys and descriptions provided by Tavares (1962Tavares, O., 1962. Contribuição ao conhecimento da tribu Ormiini. I: Gênero Ormia Robineau-Desvoidy, 1830 (Diptera, Tachinidae). Mem. Inst. Oswaldo Cruz 60, 347–363. https://doi.org/10.1590/S0074-02761962000300006., 1965aTavares, O., 1965a. Contribuição ao conhecimento da tribu Ormiini. III: Gênero Euphasiopteryx Townsend, 1915 (Diptera, Tachinidae). Mem. Inst. Oswaldo Cruz 63, 13–25. https://doi.org/10.1590/S0074-02761965000100002., 1965bTavares, O., 1965b. Contribuição ao conhecimento da tribu Ormiini. IV: Gêneros Ormia Robineau-Desvoidy, 1830, e, Euphasiopteryx Townsend, 1915 (Diptera, Tachinidae). Mem. Inst. Oswaldo Cruz 63, 237–253. https://doi.org/10.1590/S0074-02761965000100016., 1965cTavares, O., 1965c. Contribuição ao conhecimento da tribu Ormiini. V. Gênero Ormia Robineau-Desvoidy, 1830 (Diptera, Tachinidae). Rev. Bras. Biol. 25, 211–215.). Even if the specimens could be safely identified using the key provided by Tavares (1965b)Tavares, O., 1965b. Contribuição ao conhecimento da tribu Ormiini. IV: Gêneros Ormia Robineau-Desvoidy, 1830, e, Euphasiopteryx Townsend, 1915 (Diptera, Tachinidae). Mem. Inst. Oswaldo Cruz 63, 237–253. https://doi.org/10.1590/S0074-02761965000100016. (couplets 1-3-4-5), some characteristics of the specimens disagree with the original description of Ormia crespoi: (i) three humeral bristles, (ii) four bristles at the base of R5, (iii) abdomen (terga 4 and 5) slightly darkened, and (iv) entirely yellow calyptra. We then decided to adopt a more cautious approach, using "cfr.". The hindrance of safely identifying the species within the genus is even reported by Tavares himself (Tavares 1965aTavares, O., 1965a. Contribuição ao conhecimento da tribu Ormiini. III: Gênero Euphasiopteryx Townsend, 1915 (Diptera, Tachinidae). Mem. Inst. Oswaldo Cruz 63, 13–25. https://doi.org/10.1590/S0074-02761965000100002.), when he even highlighted the need for further studies in order to better clarify the identity of the species. All vouchers were deposited at “Coleção Entomológica Danúncia Urban - CEDU-UNILA, (Foz do Iguaçu, Brazil)".

We reared 904 individuals of Conocephalus saltator (Fig. 1), obtaining 123 puparia that emerged from 113 parasitized katydids. From these 123 puparia, 18 adult flies emerged, nine males and nine females of Ormia cfr. crespoi (Fig. 2), and four Perilampus sp. (three females, one male) (Fig. 3). We can safely assume that the perilampid hyperparasitoids emerged from puparia of the same tachinid species, by comparing those from where the adult flies and the adult wasps emerged.

Figure 1
Individuals of Conocephalus saltator. A: Adult male; B: Adult female; C: Male nymph; D: Female nymph; E: Male nymph, feeding on grass seeds.
Figure 2
Individual of Ormia cfr. crespoi. A: Female, lateral view; B: Female, dorsal view.
Figure 3
All reared specimens of Perilampus sp. A: specimen 477, lateral view; B: specimen 477, dorsal view; C: specimen 40; D: specimen 337; E: specimen 55.

Literature data suggest that the larvae of Ormia develop within the host for a period of seven to ten days, when they emerge, killing the host and pupariating (Cade, 1975Cade, W.H., 1975. Acoustically orienting parasoitoids: fly phonotaxis to cricket song. Science 190, 1312–1313. https://doi.org/10.1126/science.190.4221.1312.; Walker and Wineriter, 1991Walker, T.J., Wineriter, S.A., 1991. Hosts of a phonotactic parasitoid and levels of parasitism (Diptera: Tachinidae: Ormia ochracea). Fla. Entomol. 74, 554–559.; Adamo et al., 1995Adamo, S.A., Robert, D., Hoy, R.R., 1995. Effects of a tachinid parasitoid, Ormia ochracea, on the behaviour and reproduction of its male and female field cricket hosts (Gryllus spp). J. Insect Physiol. 41, 269–277. https://doi.org/10.1016/0022-1910(94)00095-X.; Zuk et al., 1995Zuk, M., Simmons, W., Rotenberry, J.T., 1995. Acoustically orienting parasitoids in calling and silent males of the field cricket Teleogryllus oceanicus. Ecol. Entomol. 20, 380–383. https://doi.org/10.1111/j.1365-2311.1995.tb00471.x.). Because we brought to the laboratory katydids that had been parasitized in the field, at an unknown time, we cannot present robust data on the timing of larval development; however, it was possible to estimate the duration of the pupal stage. We found that the time between pupariation and the emergence of adults ranged from 15 to 21 days (N = 18), a longer timespan than what was previously presented for Ormia ochracea (12–15 days; N = 91) and Ormia depleta (11–13 days; N = 78) (Wineriter and Walker, 1990Wineriter, S.A., Walker, T.J., 1990. Rearing phonotactic parasitoid flies [Diptera: Tachinidae, Ormiini, Ormia spp.]. Entomophaga 35, 621–632. https://doi.org/10.1007/BF02375096.). Regarding the development time of perilampids, Vinson and Iwantsch (1980)Vinson, S.B., Iwantsch, G.F., 1980. Host regulation by insect parasitoids. Q. Rev. Biol. 55, 143–165. https://doi.org/10.1086/411731. reported that adult wasps emerge from the puparium of their hosts between 20 and 30 days. We could track the development time of three wasps, i.e., the timespan between the pupariation of the tachinid fly and the emergence of adult wasps from those puparia, and we observed a slightly longer development time (27, 36 and 37 days).

Lehmann (2003)Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091. suggested the existence of regional preferences in host selection by species within Ormiini, as these flies are opportunistic parasitoids. This author also stated that repetitive song pattern in the species of Conocephalinae, with small differentiation between the sound produced by distinct species could favor host-switching. Thus, it is noteworthy that we had not previously recorded any puparia of Ormia from sampled individuals of other katydid species (see Fianco et al., 2022Fianco, M., Szinwelski, N., Faria, L.R.R., 2022. Katydids (Orthoptera: Tettigoniidae) from the Iguaçu National Park, Brazil. Zootaxa 5136, 1–72. https://doi.org/10.11646/zootaxa.5136.1.1.
https://doi.org/10.11646/zootaxa.5136.1....
). This is certainly an observation that demands additional studies.

A better understanding of host-parasite interactions and host ranges and even the increased availability of specimens of Ormiini in taxonomic collections can be a desirable by-product of projects where orthopterans are reared aiming at recording their sounds. Lehmann (2003)Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091. stated that individuals of Ormiini are scarce in entomological collections, due to their crepuscular habits, despite being highly biased toward females, due to the use of sound traps for the samplings. Therefore, the collection of male flies becomes even more relevant.

It is worth noting that external evidence that a specimen of Ormiini is parasitized can be easily observed, especially in the case of hosts with lighter coloration, as the respiratory funnel of larvae imprints the host integument with a dark brown macula (Lehmann and Heller, 1998Lehmann, G.U.C., Heller, K.-G., 1998. Bushcricket song structure and predation by the acoustically orienting parasitoid fly Therobia leonidei (Diptera: Tachinidae: Ormiini). Behav. Ecol. Sociobiol. 43, 239–245. https://doi.org/10.1007/s002650050488.). After being detected, the maintenance of Diptera puparia is cheap and is not time consuming, requiring only space and periodical monitoring.

Current knowledge about these complex host-parasitoid-hyperparasitoid interactions is incipient, but the possibility that those interactions are much more widespread cannot be dismissed. We strongly believe that studies involving rearing and monitoring species of Orthoptera in laboratory will provide additional records of interactions in the future.

Acknowledgments

We thank the Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio for providing the national collecting permits (71764-1 to HP). We also thank the Parque Nacional do Iguaçu staff and colleagues of the Transport Section of UNILA for support. The authors acknowledge Fundação Araucária, for providing the facilities where photos were taken, and also for the scholarship to HP (88887.354569/2019-00), CNPq , for the scholarship to MF (CNPq proc. 140559/2020-5), and PRPPG/UNILA, for financial support (137/2018, 80/2019 and 214/2021 to LRRF or EDGS/LRRF). ADM thanks INCT-HYMPAR for the support through a postdoctoral scholarship (CNPq proc. 465562/2014-0 / CAPES 88887.198118/2018-00).

References

  • Adamo, S.A., Robert, D., Hoy, R.R., 1995. Effects of a tachinid parasitoid, Ormia ochracea, on the behaviour and reproduction of its male and female field cricket hosts (Gryllus spp). J. Insect Physiol. 41, 269–277. https://doi.org/10.1016/0022-1910(94)00095-X.
  • Allen, G.R., 1995. The biology of the phonotactic parasitoid, Homotrixa sp. (Diptera: Tachinidae), and its impact on the survival of male Sciarasaga quadrata (Orthoptera: Tettigoniidae) in the field. Ecol. Entomol. 20, 103–110. https://doi.org/10.1111/j.1365-2311.1995.tb00435.x.
  • Allen, G.R., Pape, T., 1996. Description of female and biology of Blaesoxipha ragg Pape (Diptera: Sarcophagidae), a parasitoid of Sciarasaga quadrata Rentz (Orthoptera: Tettigoniidae) in Western Australia. Aust. J. Entomol. 35, 147–151. https://doi.org/10.1111/j.1440-6055.1996.tb01379.x.
  • Arnaud, P.H., 1978. A Host-parasite Catalog of North American Tachinidae (Diptera). USDA, Washington DC.
  • Barraclough, D.A., Allen, G.R., 1996. Two new species of Homotrixa Villeneuve (Diptera: Tachinidae: Ormiini) from Southwestern Australia, with data on biology and ecology. Aust. J. Entomol. 35, 135–145. https://doi.org/10.1111/j.1440-6055.1996.tb01377.x.
  • Belshaw, R., Grafen, A., Quicke, D.L., 2003. Inferring life history from ovipositor morphology in parasitoid wasps using phylogenetic regression and discriminant analysis. Zool. J. Linn. Soc. 139, 213–228. https://doi.org/10.1046/j.1096-3642.2003.00078.x.
  • Blackith, R.E., 1967. A hymenopterous primary parasite of Morabine grasshoppers. Aust. J. Entomol. 15, 93–102. https://doi.org/10.1071/ZO9670093.
  • Brodeur, J., Boivin, G., 2004. Functional ecology of immature parasitoids. Annu. Rev. Entomol. 49, 27–49. https://doi.org/10.1146/annurev.ento.49.061703.153618.
  • Brown, J.H., Lomolino, M.V., 1998. Biogeography, 2nd ed. Sinauer, Sunderland.
  • Cade, W.H., 1975. Acoustically orienting parasoitoids: fly phonotaxis to cricket song. Science 190, 1312–1313. https://doi.org/10.1126/science.190.4221.1312.
  • Cantrell, B.K., 1986. An update host catalogue for the Australian Tachinidae (Diptera). Aust. J. Entomol. 25, 255–265.
  • Cervi, A.C., Borgo, M., 2007. Epífitos vasculares no Parque Nacional do Iguaçu, Paraná (Brasil). Levantamento preliminar. Fontqueria 55, 415–422.
  • Eggleton, P., Belshaw, R., 1993. Comparisons of dipteran, hymenopteran and coleopteran parasitoids: provisional phylogenetic explanations. Biol. J. Linn. Soc. Lond. 48, 213–226. https://doi.org/10.1006/bijl.1993.1015.
  • Faria, L.R.R., Pie, M.R., Salles, F.F., Soares, E.D.G., 2021. The Haeckelian shortfall or the tale of the missing semaphoronts. J. Zool. Syst. Evol. Res. 59, 359–369. https://doi.org/10.1111/jzs.12435.
  • Fianco, M., Szinwelski, N., Faria, L.R.R., 2022. Katydids (Orthoptera: Tettigoniidae) from the Iguaçu National Park, Brazil. Zootaxa 5136, 1–72. https://doi.org/10.11646/zootaxa.5136.1.1
    » https://doi.org/10.11646/zootaxa.5136.1.1
  • Ford, N., 1922. An undescribed planidium of Perilampus from Conocephalus (Hym.). Can. Entomol. 54, 199–204.
  • Frisch, J.A., 1936. Perilampus, a secondary parasite on sarcophagids and tachinids parasitic on katydids and long-horned grasshoppers. Psyche (Camb., Mass.) 43, 84–85.
  • Gauld, I.D., Bolton, B., 1988. The Hymenoptera. Oxford University Press, London.
  • Gordh, G., Legner, E.F., Caltagirone, L.E., 1999. Biology of parasitic Hymenoptera. In: Bellows, T.S., Fisher, T.W. (Eds.), Handbook of Biological Control. Academic Press, London, pp. 355–381.
  • Hassell, M.P., 2000. Host-parasitoid population dynamics. J. Anim. Ecol. 69, 543–566. https://doi.org/10.1046/j.1365-2656.2000.00445.x.
  • Hassell, M.P., Waage, J.K., 1984. Host-parasitoid population interactions. Annu. Rev. Entomol. 29, 89–114. https://doi.org/10.1146/annurev.en.29.010184.000513.
  • Heraty, J.M., Darling, D.C., 1984. Comparative morphology of the planidial larvae of Eucharitidae and Perilampidae (Hymenoptera: chalcidoidea). Syst. Entomol. 9, 309–328. https://doi.org/10.1111/j.1365-3113.1984.tb00056.x.
  • Hortal, J., de Bello, F., Diniz-Filho, J.A.F., Lewinsohn, T.M., Lobo, J.M., Ladle, R.J., 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400.
  • Howitt, A.J., 1951. The Biology of Tephromyiella Atlantis (Aid.), a Parasite of Nymphal an Adult Grasshopper. Available in: https://scholarworks.montana.edu/xmlui/bitstream/handle/1/3798/31762001565769.pdf (accessed 20 October 2021).
    » https://scholarworks.montana.edu/xmlui/bitstream/handle/1/3798/31762001565769.pdf
  • Inclán, D.J., O’Hara, J.E., Stireman 3rd, J.O., Shima, H., Pohjoismäki, J., Giudice, G.L., Cerretti, P., 2018. The monophyly of the Glaurocarini (Diptera: Tachinidae: Tachininae) with the description of a new species of Semisuturia from Australia. Insect Syst. Evol. 49, 1–22. https://doi.org/10.1163/1876312X-48022157.
  • Kelly, E.O.G., 1914. A new sarcophagid parasite of grasshoppers. J. Agric. Res. 6, 435–446.
  • Lakes-Harlan, R., Jacobs, K., Allen, G.R., 2007. Comparison of auditory sense organs in parasitoid Tachinidae (Diptera) hosted by Tettigoniidae (Orthoptera) and homologous structures in a non-hearing Phoridae (Diptera). Zoomorphology 126, 229–243. https://doi.org/10.1007/s00435-007-0043-3.
  • LaSalle, J., Gauld, I.D., 1991. Parasitic Hymenoptera and the biodiversity crisis. Redia (Firenze) 74, 315–334.
  • Lehmann, G.U.C., Heller, K.-G., 1998. Bushcricket song structure and predation by the acoustically orienting parasitoid fly Therobia leonidei (Diptera: Tachinidae: Ormiini). Behav. Ecol. Sociobiol. 43, 239–245. https://doi.org/10.1007/s002650050488.
  • Lehmann, G.U.C., 2003. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool. Anz. 242, 107–120. https://doi.org/10.1078/0044-5231-00091.
  • Léonide, J., Léonide, J.C., 1969. Insectes parasites et prédateurs des Diptères acridiophages: parasites occasionnels des Orthoptères en Provence. Bull. Soc. Entomol. Fr. 74, 21–32. https://doi.org/10.3406/bsef.1969.21038.
  • Lewis, O.T., Memmott, J., Lasalle, J., Lyal, C.H.C., Whitefoord, C., Godfray, C.J., 2002. Structure of a diverse tropical forest insect–parasitoid community. J. Anim. Ecol. 71, 855–873. https://doi.org/10.1046/j.1365-2656.2002.00651.x.
  • Lomolino, M.V., 2004. Conservation biogeography. In: Lomolino, M.V., Heaney, L.R. (Eds.), Frontiers of Biogeography. Sinauer, Sunderland, pp. 293–296.
  • Muesebeck, C.F.W., 1977. The Parasitic Wasp of the Genus Macroteleia Westwood of the New World (Hymenoptera, Proctotrupoidea, Scelionidae). USDA, Washington, DC. (Technical Bulletin, 1565).
  • Nihei, S., Toma, R., 2010. Taxonomic notes on Borgmeiermyia Townsend (Diptera, Tachinidae) with the first host record for the genus. ZooKeys 42, 101–110. https://doi.org/10.3897/zookeys.42.190.
  • Noyes, J.S., 2019. Universal Chalcidoidea Database. Available in: http://www.nhm.ac.uk/chalcidoids (accessed 23 February 2023).
    » http://www.nhm.ac.uk/chalcidoids
  • O’Hara, J.E., Henderson, S.J., Wood, D.M., 2020. Preliminary Checklist of the Tachinid of the World. Version 2.1. Available in: http://www.nadsdiptera.org/Tach/WorldTachs/Checklist/Tachchlist_ver2.1.pdf (accessed 20 October 2021).
    » http://www.nadsdiptera.org/Tach/WorldTachs/Checklist/Tachchlist_ver2.1.pdf
  • Paviolo, A., De Angelo, C., Ferraz, K.M.P.M.B., Morato, R.G., Martinez Pardo, J., Srbek-Araujo, A.C., Beisiegel, B., Lima, F., Sana, D., Xavier da Silva, M., Velázquez, M.C., Cullen, L., Crawshaw Junior, P., Jorge, M.L.S.P., Galetti, P.M., Di Bitetti, M.S., Paula, R.C., Eizirik, E., Aide, T.M., Cruz, P., Perilli, M.L.L., Souza, A.S.M.C., Quiroga, V., Nakano, E., Ramírez Pinto, F., Fernández, S., Costa, S., Moraes Junior, E.A., Azevedo, F., 2016. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147. https://doi.org/10.1038/srep37147.
  • Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., Hirota, M.M., 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021.
  • Santos, A.M., Quicke, D.L., 2011. Large‐scale diversity patterns of parasitoid insects. Entomol. Sci. 14, 371–382. https://doi.org/10.1111/j.1479-8298.2011.00481.x.
  • Shapiro, L., 1995. Parasitism of Orchelimum katydids (Orthoptera: Tettigoniidae) by Ormia lineifrons (Diptera: Tachinidae). Fla. Entomol. 78, 615–616.
  • Smith, H.S., 1912. The chalcidoid Genus Perilampus and its Relations to the Problem of Parasite Introduction, USDA, Washington, DC. Technical Series, Bureau of Entomology.
  • Smith, H.S., 1917. The habit of leaf-oviposition among the parasitic Hymenoptera. Psyche (Camb., Mass.) 24, 63–68. https://doi.org/10.1155/1917/52524.
  • Smith, R.W., 1944. Observations on parasites of some Canadian grasshoppers. Can. Entomol. 2, 28–33. https://doi.org/10.4039/Ent7628-2.
  • Smith, R.W., 1958. Parasites of nymphal and adult grasshoppers (Orthoptera: Acrididae) in western Canada. Can. J. Zool. 36, 217–262. https://doi.org/10.1139/z58-022
    » https://doi.org/10.1139/z58-022
  • Smith, R.W., Finlayson, T.U., 1950. Larvae of dipterous parasites of nymphal and adult grasshoppers. Can. J. Res. 28, 81–117. https://doi.org/10.1139/cjr50d-007.
  • Tachi, T., 2011. Three new species of Exorista Meigen (Diptera: Tachinidae), with a discussion of the evolutionary pattern of host use in the genus. J. Nat. Hist. 45, 1165–1197.
  • Tavares, O., 1962. Contribuição ao conhecimento da tribu Ormiini. I: Gênero Ormia Robineau-Desvoidy, 1830 (Diptera, Tachinidae). Mem. Inst. Oswaldo Cruz 60, 347–363. https://doi.org/10.1590/S0074-02761962000300006.
  • Tavares, O., 1965a. Contribuição ao conhecimento da tribu Ormiini. III: Gênero Euphasiopteryx Townsend, 1915 (Diptera, Tachinidae). Mem. Inst. Oswaldo Cruz 63, 13–25. https://doi.org/10.1590/S0074-02761965000100002.
  • Tavares, O., 1965b. Contribuição ao conhecimento da tribu Ormiini. IV: Gêneros Ormia Robineau-Desvoidy, 1830, e, Euphasiopteryx Townsend, 1915 (Diptera, Tachinidae). Mem. Inst. Oswaldo Cruz 63, 237–253. https://doi.org/10.1590/S0074-02761965000100016.
  • Tavares, O., 1965c. Contribuição ao conhecimento da tribu Ormiini. V. Gênero Ormia Robineau-Desvoidy, 1830 (Diptera, Tachinidae). Rev. Bras. Biol. 25, 211–215.
  • Toma, R., Olivier, R.S., 2018. Paxiximyia sulmatogrossensis, a new genus and species of Tachinidae (Diptera) reared from Urucumania borellii (Giglio-Tos, 1897) (Phasmatodea: Pseudophasmatidae) collected in the state of Mato Grosso do Sul, Brazil. Rev. Bras. Entomol. 62, 71–76. https://doi.org/10.1016/j.rbe.2017.10.004.
  • Tschorsnig, H.P., 2017. Preliminary Host Catalogue of Palaearctic Tachinidae (Diptera). Available in: https://www.uoguelph.ca/nadsfly/Tach/WorldTachs/CatPalHosts/Cat_Pal_tach_hosts_Ver1.pdf (accessed 20 October 2021).
    » https://www.uoguelph.ca/nadsfly/Tach/WorldTachs/CatPalHosts/Cat_Pal_tach_hosts_Ver1.pdf
  • Vincent, C.M., Bertram, S.M., 2009. The parasitoid fly Ormia ochracea (Diptera: Tachinidae) can use juvenile crickets as hosts. Fla. Entomol. 92, 598–600. https://doi.org/10.1653/024.092.0411.
  • Vinson, S.B., Iwantsch, G.F., 1980. Host regulation by insect parasitoids. Q. Rev. Biol. 55, 143–165. https://doi.org/10.1086/411731.
  • Waage, J.K., Hassell, M.P., 1982. Parasitoids as biological control agents - a fundamental approach. Parasitology 84, 241–268. https://doi.org/10.1017/S003118200005366X
    » https://doi.org/10.1017/S003118200005366X
  • Wajnberg, E., Bernstein, C., Van Alphen, J., 2008. Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications. Blackwell, Oxford.
  • Walker, T.J., Wineriter, S.A., 1991. Hosts of a phonotactic parasitoid and levels of parasitism (Diptera: Tachinidae: Ormia ochracea). Fla. Entomol. 74, 554–559.
  • Wang, Z.-Z., Liu, Y.-Q., Shi, M., Huang, J.-H., Chen, X.-X., 2019. Parasitoid wasps as effective biological control agents. J. Integr. Agric. 18, 705–715. https://doi.org/10.1016/S2095-3119(18)62078-7.
  • Wineriter, S.A., Walker, T.J., 1990. Rearing phonotactic parasitoid flies [Diptera: Tachinidae, Ormiini, Ormia spp.]. Entomophaga 35, 621–632. https://doi.org/10.1007/BF02375096.
  • Wood, M., Zumbado, M.A., 2010. Tachinidae. In: Brown, B.V., Borkent, A., Cumming, J.M., Wood, D.M., Woodley, N.E., Zumbado, M.A. (Eds.), Manual of Central American Diptera. Vol. 2. NRC Research Press, Ottawa, pp. 1343–1417.
  • Young, A.M., 1977. New record of Neotropical katydid Celidophylla albimacula (Orthoptera: Tettigoniidae) and parasitism, from Costa Rica. Entomol. News 88, 210–211.
  • Zuk, M., Simmons, W., Rotenberry, J.T., 1995. Acoustically orienting parasitoids in calling and silent males of the field cricket Teleogryllus oceanicus. Ecol. Entomol. 20, 380–383. https://doi.org/10.1111/j.1365-2311.1995.tb00471.x.

Edited by

Associate Editor: Marcelo Tavares

Publication Dates

  • Publication in this collection
    24 June 2024
  • Date of issue
    2024

History

  • Received
    23 Oct 2023
  • Accepted
    30 Apr 2024
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br