Acessibilidade / Reportar erro

What happens to the fluid balance during and after recovering from septic shock?

Abstracts

Objective:

We aimed to evaluate the cumulative fluid balance during the period of shock and determine what happens to fluid balance in the 7 days following recovery from shock.

Methods:

A prospective and observational study in septic shock patients. Patients with a mean arterial pressure ≥ 65mmHg and lactate < 2.0mEq/L were included < 12 hours after weaning from vasopressor, and this day was considered day 1. The daily fluid balance was registered during and for seven days after recovery from shock. Patients were divided into two groups according to the full cohort’s median cumulative fluid balance during the period of shock: Group 1 ≤ 4.4L (n = 20) and Group 2 > 4.4L (n = 20).

Results:

We enrolled 40 patients in the study. On study day 1, the cumulative fluid balance was 1.1 [0.6 - 3.4] L in Group 1 and 9.0 [6.7 - 13.8] L in Group 2. On study day 7, the cumulative fluid balance was 8.0 [4.5 - 12.4] L in Group 1 and 14.7 [12.7 - 20.6] L in Group 2 (p < 0.001 for both). Afterwards, recovery of shock fluid balance continued to increase in both groups. Group 2 had a more prolonged length of stay in the intensive care unit and hospital compared to Group 1.

Conclusion:

In conclusion, positive fluid balances are frequently seen in patients with septic shock and may be related to worse outcomes. During the shock period, even though the fluid balance was previously positive, it becomes more positive. After recovery from shock, the fluid balance continues to increase. The group with a more positive fluid balance group spent more time in the intensive care unit and hospital.

Sepsis; Shock, septic; Fluid therapy; Water-electrolyte balance


Objetivo:

Avaliar o balanço hídrico acumulado durante o período do choque e determinar o que ocorre com ele nos 7 dias que se seguem à reversão do choque.

Métodos:

Estudo prospectivo e observacional, realizado em pacientes com choque séptico. Foram incluídos pacientes com pressão arterial média ≥ 65mmHg e lactato < 2,0mEq/L desmamados há menos de 12 horas do uso de vasopressores, sendo esse dia considerado o Dia 1. O balanço hídrico diário foi registrado por 7 dias após recuperação do choque. Os pacientes foram divididos em dois grupos, segundo a mediana da coorte para o balanço hídrico acumulado durante o período do choque: Grupo 1 ≤ 4,4L (n = 20) e Grupo 2 > 4,4L (n = 20).

Resultados:

Inscrevemos, neste estudo, um total de 40 pacientes. No Dia 1 do estudo, o balanço hídrico acumulado era de 1,1 [0,6 - 3,4] L no Grupo 1 e 9,0 [6,7 - 13,8] L no Grupo 2. No Dia 7 do estudo, o balanço hídrico acumulado era de 8,0 [4,5 - 12,4] L no Grupo 1 e 14,7 [12,7 - 20,6] L no Grupo 2 (p < 0,001 para ambos). A seguir, após a recuperação do choque, o balanço hídrico continuou a aumentar em ambos os grupos. Em comparação ao Grupo 1, o Grupo 2 teve um tempo mais longo de permanência na unidade de terapia intensiva e no hospital.

Conclusão:

São frequentemente observados balanços hídricos positivos em pacientes com choque séptico, o que pode estar relacionado a desfechos piores. Durante o período do choque, mesmo que o balanço hídrico fosse previamente positivo, este se torna ainda mais positivo. Após a recuperação do choque, o balanço hídrico continua a aumentar. Esse grupo com um balanço hídrico mais positivo permaneceu por mais tempo na unidade de terapia intensiva e no hospital.

Sepse; Choque séptico; Hidratação; Equilíbrio hidroeletrolítico


INTRODUCTION

Fluid replacement is the cornerstone of the treatment for septic shock, which is followed by vasopressors and inotropes. Venodilation, transudation of fluids from the vascular space into tissues, and reduced oral intake result in hypovolemia in the first hours of sepsis.(1Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis: less is more. Chest. 2008;133(1):252-63. Review.)

In septic patients, the microcirculation is markedly deranged with a lower flow velocity and more heterogeneous perfusion.(2De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98-104.

Réa-Neto A, Rezende E, Mendes CL, David CM, Dias FS, Schettino G, et al. Consenso brasileiro de monitorização e suporte hemodinâmico - Parte IV: monitorização da perfusão tecidual. Rev Bras Ter Intensiva. 2006;18(2):154-60.

Trzeciak S, Dellinger RP, Parrillo JE, Gugliemi M, Bajaj J Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM; Microcirculatory Alterations in Resuscitation and Shock Investigators. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49(1):88-98, 98. e1-2.
-5Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368-77.) Hypovolemia further exacerbates the altered perfusion of the microcirculation, resulting in inadequate oxygen availability for mitochondrial oxidative phosphorylation. Therefore, the main goal of early management is to treat hypovolemia and restore tissue perfusion.(1Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis: less is more. Chest. 2008;133(1):252-63. Review.)

In the early phase of sepsis, therapeutic goals have been proposed to guide fluid resuscitation, and they are widely accepted.(1Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis: less is more. Chest. 2008;133(1):252-63. Review.,6Smith SH, Perner A. Higher vs. lower fluid volume for septic shock: clinical characteristics and outcome in unselected patients in a prospective, multicenter cohort. Crit Care. 2012;16(3):R76.) The current guidelines recommend liberal fluid resuscitation in this phase. However, after initial monitoring, management and stabilization of the mean arterial pressure (MAP) with vasopressors, further fluids are often administered according to subjective data from the clinical examination, urine output, and measurements of the ventricular filling pressures.(1Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis: less is more. Chest. 2008;133(1):252-63. Review.)

Excess fluids may be harmful in critically ill patients and have been correlated with the mortality and various complications, such as heart failure, pulmonary edema, pneumonia, dilutional coagulopathy, decreased gastrointestinal motility, abdominal compartment syndrome, and more.(1Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis: less is more. Chest. 2008;133(1):252-63. Review.,7Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002;89(4):622-32. Review.

Garrido Adel P, Cruz RJ Jr, Poli de Figueiredo LF, Rocha e Silva M. Small volume of hypertonic saline as the initial fluid replacement in experimental hypodynamic sepsis. Crit Care. 2006;10(2):R62.
-9Singer M. The key advance in the treatment of sepsis in the last 10 years... doing less. Crit Care. 2006;10(1):122.)

We hypothesized that patients in septic shock receive excess fluids even after they are weaned from vasopressors. Therefore, we evaluated the fluid balance during the period of shock and for 7 days after patients were weaned from vasoactive drugs.

METHODS

This was a prospective, observational, cohort study that was performed between May 2009 and October 2010 in a 10-bed intensive care unit at a university hospital. The study was approved by the Institutional Ethics Committee of Hospital de Base, Faculdade de Medicina de São José do Rio Preto, document nº 426/2008. Informed consent was obtained from the next of kin.

Septic shock was defined according to previously described criteria.(1010 Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G; SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250-6. Review.) Patients older than 18 years of agewho had septic shock were evaluated if they had been weaned from all vasopressors for ≤ 12 hours, had a MAP ≥ 65mmHg and had a serum lactate < 2.0mEq/L (Figure 1). The exclusion criteria were pregnancy and lack of consent from the family or assistant physician or if the patient was considered unlikely to survive hospitalization.

Figure 1
Study flowchart

ICU - intensive care unit.


The data recorded prospectively on admission included the following: age, sex, patient classification (medical or surgical), smoking history (active in the last year), alcohol consumption and comorbidities (based on the International Classification of Disease-10, anamnesis and electronic patient charts). Daily measurements of all fluid intake and output; use of vasopressors, dobutamine and furosemide; vital signs; MAP; central venous pressure (CVP) and urinary output were recorded for seven days after enrollment. Day 1 was considered the day that the patients had been weaned from all vasopressors for ≤ 12 hours, had a mean arterial pressure (MAP) ≥ 65mmHg and had a serum lactate concentration < 2.0mEq/L.

The cumulative fluid balance was calculated during the period of shock, after which the fluid balance was reinitiated from zero and registered during 7 days. Patients were divided into 2 groups according to the total cohort’s median cumulative fluid balance that was administered during the period of shock with vasopressors, which was calculated on study day 1. The fluid balance was calculated by the difference between the infused fluids (crystalloids, colloids, drug dilution fluids, blood products, and water by nasogastric drain) and eliminated liquids (diuresis, dialysis, and drains). It was attributed to the value of 400mL for endogenous water and 800mL for imperceptive losses, adding 100mL/h/for each degree above 37.8°C

The Acute Physiology and Chronic Health Evaluation (APACHE II) was used to assess the severity of disease at admission in the intensive care unit (ICU), and the Sequential Organ Failure Assessment (SOFA) score was used to assess the severity of the disease at inclusion in the study.(1111 Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818-29.,1212 Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707-10.) Comorbid diabetes mellitus was recorded for patients with current use of oral hypoglycemic agents or insulin. Acute respiratory failure and acute respiratory distress syndrome (ARDS) were defined according to the 1994 American-European Consensus Conference definitions. Nosocomial infection was defined as an infection acquired after 48 hours of hospitalization.(1313 Levy CE. Manual de microbiologia clínica para o controle de infecção em serviços de saúde. Brasília: Editora Agência Nacional de Vigilância Sanitária; 2004.) Acute kidney injury was defined as an increase in creatinine ≥ 0.3mg/dL or an increase in the baseline value ≥ 150 - 200% and/or a urine output < 0.5mL/kg/h for more than 6 hours.(1414 Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.) A major complication was considered as any life-threatening event or unexpected medical event that prolonged the length of hospital stay.

Statistical analysis

The categorical variables were treated as proportions and analyzed using the chi-square test. The continuous variables with a normal distribution are presented as the means and standard deviations and evaluated using the t-test, while the variables that did have a normal distribution were evaluated using the Kruskal-Wallis test and are presented as the medians and confidence intervals. p < 0.05 was considered statistically significant. ANOVA was used to test for repeated measures, which was followed by Bonferroni pair-wise comparisons.

RESULTS

We enrolled 40 patients in the study (Figure 1). The mean age of the patients was 61.6 ± 16 years, and their SOFA score was 7.4 ± 3.5 and APACHE II score was 23.4 ± 8.9. The median time to recovery from shock (duration on vasopressor drugs) before inclusion in the study was five days. Table 1 shows the clinical characteristics and epidemiological data of the two study groups. The most frequent site of infection was the respiratory tract (67%). The duration of shock prior to study inclusion was significantly higher in Group 2 than in Group 1 (8.5 ± 4.0 days versus 4.4 ± 3.3 days, respectively, p < 0.001).

Table 1
Characteristics of the two groups

The physiological variables and laboratory tests are shown in table 2. On study day 5, Group 2 had a significantly higher CVP (12 ± 5mmHg versus 9 ± 4mmHg, p = 0.04) and mean arterial pressure (86 ± 15mmHg versus 76 ± 14mmHg, p = 0.03) than Group 1. Compared to Group 1, Group 2 had significantly lower urea levels on day 7 (81 ± 40mg/dL versus 138 ± 78mg/dL, p = 0.006) and larger urine volumes on days 6 and 7. Group 2 had lower hemoglobin levels than Group 1 on day 1 and from day 4 to day 7 (p < 0.05 for all). The PO2/FiO2 ratio was lower in Group 2 than in Group 1 on days 1 and 6.

Table 2
Physiological variables in the two groups

On day 1, the cumulative fluid balance was 1.1 [0.6 - 3.4] L in Group 1 and 9.0 [6.7 - 13.8] L in Group 2 (p < 0.001). On day 7, the cumulative fluid balance was 8.0 [4.5 - 12.4] L in Group 1 and 14.7 [12.7 - 20.6] L in Group 2 (p < 0.001), considering not only the fluid balance after shock but also the cumulative fluid balance during shock.

Group 2 received more crystalloids (12.4 [6.0 - 15.7] L versus 8.6 [3.2 - 12.0] L, p = 0.051), colloids (2 [1.8 - 2.0] L versus 0.5 [0.5 - 0.9] L, p < 0.001) and packed red blood cells (2.3 [1.4 - 2.3] L versus 0.5 [0.4 - 0.6] L, p < 0.001) than Group 1 (Table 3). Diuretics and dobutamine were given more frequently in Group 2 (Table 3). Group 2 had longer lengths of stay in the ICU (21 versus11 days, p = 0.02) and in hospital stays (29 versus 16.5 days; p = 0.028) than the patients in Group 1 (Table 4).

Table 3
Type of fluids, fluid balance and use of furosemide and dobutamine in Groups 1 and 2
Table 4
Outcomes in Groups 1 and 2

We performed another analysis after zeroing the fluid balance and restarting the calculations on day 2 (first day without any vasopressors). The cumulative fluid balance ranged from -16.9 to 20.8L (median: 4.3L) (Figure 2). The cumulative fluid balances starting from day 2 were the following: day 2 (n = 40): 1.0L (0.05 - 1.6L), day 3 (n = 40): 1.7L (0.3 - 3.5L), day 4 (n = 38): 3.4L (0.05 - 4.8L), day 5 (n = 31): 4.4L (-0.12 - 6.2L), day 6 (n = 28): 5.4L (2.0 - 8.6L), and day 7 (n = 26): 5.1L (2.8 - 9.2L). The median daily increase in the fluid balance after recovery from shock was 0.64 L/day.

Figure 2
Seven-day cumulative fluid balance after recovery from shock (in liters). The values are presented as the mean (standard error).

ANOVA: p < 0.0001.


DISCUSSION

Our main finding on fluid administration in patients with septic shock after a median of five days on vasopressors, considering the cumulative fluid balance during shock, was that they had a large accumulated fluid balance. In addition, after weaning from vasopressors, the fluid balance continued to accumulate by a median of 0.64L per day. The presence of a higher positive fluid balance during the shock period and at the end of seven days was associated with a more prolonged length of stay in the ICU and hospital.

Many studies have associated more positive fluid balances with worse outcomes.(1515 Boyd JH, Forbes J, Nakada TA, Walley KR, Russel JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259-65.

16 Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, Cook DJ, Presneill JJ, Ayers D; VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877-87.

17 Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344-53.

18 Simmons RS, Berdine GG, Seidenfeld JJ, Prihoda TJ, Harris GD, Smith JD, et al. Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis. 1987;135(4):924-9.

19 Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122(6):2080-6.

20 Shuller D, Mitchell JP, Calandrino FS, Shuster DP. Fluid balance during pulmonary edema. Is fluid gain a marker or a cause of poor outcome? Chest. 1991;100(4):1068-75.
-2121 Alsous F, Khamiees M, De Girolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117(6):1749-54.) Boyd et al. conducted a retrospective review of the use of intravenous fluids during the first 4 days of care for patients included in the randomized controlled Vasopressin in Septic Shock Trial.(1515 Boyd JH, Forbes J, Nakada TA, Walley KR, Russel JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259-65.) They found that a more positive fluid balance both early in resuscitation and cumulatively over 4 days was associated with an increased risk of mortality. In this study, the accumulated fluid balances in the first 12 hours were + 4.2L and + 11Lon the fourth day. These results are comparable to those observed in our study. A large European study reported that age and positive fluid balance are the strongest prognostic factors for death.(1717 Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344-53.) Other authors reported correlations between higher fluid balance and death in patients with ARDS.(1818 Simmons RS, Berdine GG, Seidenfeld JJ, Prihoda TJ, Harris GD, Smith JD, et al. Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis. 1987;135(4):924-9.

19 Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122(6):2080-6.
-2020 Shuller D, Mitchell JP, Calandrino FS, Shuster DP. Fluid balance during pulmonary edema. Is fluid gain a marker or a cause of poor outcome? Chest. 1991;100(4):1068-75.) Patients who had an increment of less than 1L of fluid by 36 hours had a better rate of survival, spent less time on the ventilator and had fewer days of hospitalization than other patients.(2020 Shuller D, Mitchell JP, Calandrino FS, Shuster DP. Fluid balance during pulmonary edema. Is fluid gain a marker or a cause of poor outcome? Chest. 1991;100(4):1068-75.) Alsous et al.(2121 Alsous F, Khamiees M, De Girolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117(6):1749-54.) demonstrated, in a retrospective study of septic shock patients, that a negative fluid balance achieved in any of the first three days after admission is associated with better survival rates.

During the ICU stay, the degree of intravascular volume deficit in septic patients varies because of venodilation and continuous capillary leakage. In addition to initial hemodynamic resuscitation with fluids, targeting a CVP of 8 - 12cmH2O, additional fluids are given on a daily basis for various reasons, including hypotension, fluid challenges, and dilutional and maintenance fluids, despite the presence of a positive fluid balance or even anasarca.(2222 Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34(1):17-60. Erratum in Intensive Care Med. 2008;34(4):783-5.) The duration of shock is important to determining the degree of accumulated fluid balance; never the less, even after weaning from vasopressors, a positive daily fluid balance is common.

We found that five days was the median time to recover from septic shock. Recovery from septic shock depends on various factors, such as the number of organ systems affected, time to effective treatment, age and comorbidities. Studies in septic shock patients do not often publish the length of time in shock. Roman-Marchant et al.(2323 Roman-Marchant O, Orellana-Jimenez CE, De Backer D, Melot C, Vincent JL. Septic shock of early or late onset: does it matter? Chest. 2004;126(1):173-8.) reported a duration of shock of nearly 42 hours in patients diagnosed with septic shock in the first 24 hours of ICU admission, and there was an estimated duration of shock of 93 hours for ICU patients who developed shock later in the ICU; the outcome was better in the former patients. Studies suggest that in patients without refractory hypotension, the cumulative vasopressor load is independently associated with mortality.(2424 Takala J. Should we target blood pressure in sepsis? Crit Care Med. 2010;38(10 Suppl):S613-9.)

Initially, considering the analysis of the fluid balance during shock period, we observed higher CVP and MAP values in Group 2. This group also received more diuretics and dobutamine. The urea level decreased significantly from days 2 and 3 to day 7 in Group 2, but not in Group 1, which may be a sign of hemodilution. Although we cannot confirm this, it is possible that there may have been more patients with signs of pulmonary congestion or myocardial dysfunction in this group. Boyd et al. demonstrated that CVP is only correlated with fluid balance in the first 12 hours.(1515 Boyd JH, Forbes J, Nakada TA, Walley KR, Russel JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259-65.) After this period, it is not a reliable marker of volemia.(1515 Boyd JH, Forbes J, Nakada TA, Walley KR, Russel JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259-65.,2525 Marik PE. Surviving sepsis: going beyond the guidelines. Ann Intensive Care. 2011;1(1):17.)

Compared with patients in Group 1, patients in Group 2 had significantly lower urea levels and higher diuresis volumes on the 7th day. The creatinine levels were higher in Group 1, but this difference was not statistically significant. Fluids given in excess may increase diuresis, but there is no evidence suggesting that this increase improves the renal recovery or prognosis. In fact, a positive fluid balance may be observed because of renal failure.(2626 Dirkes S. Acute Kidney Injury: not just acute renal failure anymore? Crit Care Nurse. 2011;31(1):37-49; quiz 50.) The Fluid and Catheter Treatment Trial (FACTT)(2727 National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, de Boisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med.2006;354(24):2564-75.) showed that fluid restriction after recovery from shock was not associated with the increased development of acute renal failure. Van Biesen et al.(2828 Van Biesen W, Yegenaga I, Vanholder R, Verbeke F, Hoste E, Colardyn F, et al. Relationship between fluid status and its management on acuterenal failure (ARF) in intensive care unit (ICU) patients with sepsis: a prospective analysis. J Nephrol. 2005;18(1):54-60.) demonstrated that the liberal use of fluids in the first 3 days of treatment for acute renal failure, leading to a positive fluid balance, fails to improve renal function, while worsening lung function.

In the adult ICU, weight is often neglected with respect to an accurate calculation of maintenance fluid requirements.(2929 Vazquez AR, Masevicius FD, Giannoni R, Dubin A. Fluids in the postoperative period: effects of lack of adjustment to body weight. Rev Bras Ter Intensiva. 2011;23(2):170-5.) Patients with very different weights are given similar fluid volumes. Despite growing evidence that a positive accumulated fluid balance correlates with worse outcomes, there is no standardization for fluid administration beyond the initial resuscitation phase, which is when myocardial performance and renal function may be most impaired. It would be advantageous for patients to be managed with supportive fluid therapy that restores the physiological status.(3030 Varon J, Fromm RE Jr. Fluid balance in sepsis: are we ready for a negative balance? Chest. 2000;117(6):1535-6.) Although this is intuitively obvious, it is very difficult to achieve in clinical practice.(2929 Vazquez AR, Masevicius FD, Giannoni R, Dubin A. Fluids in the postoperative period: effects of lack of adjustment to body weight. Rev Bras Ter Intensiva. 2011;23(2):170-5.) Our therapeutic approach tends to result in the administration of larger quantities of liquid to patients with a low body weight than to those with a greater weight.(2828 Van Biesen W, Yegenaga I, Vanholder R, Verbeke F, Hoste E, Colardyn F, et al. Relationship between fluid status and its management on acuterenal failure (ARF) in intensive care unit (ICU) patients with sepsis: a prospective analysis. J Nephrol. 2005;18(1):54-60.)

In the early phase of sepsis, recommendations for therapeutic fluid management have been proposed to guide fluid resuscitation and are widely accepted. Frequently, fluids are liberally infused during this phase. However, after initial monitoring, management and stabilization of MAP with vasopressors, further fluids are often given based on the subjective data from clinical examination, urine output, and measurements of ventricular filling pressures.(1Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis: less is more. Chest. 2008;133(1):252-63. Review.) It is necessary to change the behavior to more individualized prescriptions of fluids. In the presence of a new episode of hypotension or signs of hypovolemia, use of dynamic predictors of fluid responsiveness may be safer and help guide fluid administration with a lower risk of fluid overload.(3131 Lobo SM, de Oliveira NE. Clinical review: What are the best hemodynamic targets for noncardiac surgical patients? Crit Care. 2013;17(2):210.) When the risks associated with the extra fluid volume of a standard fluid challenge are high, such as in patients with oliguria, ventricular dysfunction or acute lung injury/ARDS, the use of echo-guided resuscitation, passive leg raising, mini-fluid challenges, and/or dynamic predictors of fluid responsiveness may be more effective and safe methods of guiding fluid resuscitation.

The most important limitation of the present study is the small sample size. In addition, it is possible that fluid balance recordings are inaccurate. Staff shortages or lack of training may lead to inadequate recordings. For these reasons, the use of fluid balance charts with cumulative input and output is being debated, and their use is questioned.(3232 Perren A, Markmann M, Merlani G, Marone C, Merlani P. Fluid balance in critically ill patients. Should we really rely on it? Minerva Anestesiol. 2011;77(8):802-11.) Another limitation of the study is the consideration of the cumulative fluid balance without considering the time to recovery from shock, which will change the mean daily fluid balance. An additional limitation is the absence of regression logistic to determine the predictive variables for receiving higher fluid levels that correlate with a more prolonged length of stay in the ICU or in the hospital and complications. We only included those patients who survived until day 7, which might have biased our results.

On the other hand, a very important aspect of our study is establishing that the fluid balance in the period after recovery from septic shock continued to accumulate by a median of 0.64L per day. To the best of our knowledge, there are no reports on the fluid balance in this phase. In addition, this is very important clinical information for preventing adverse events related to excess fluids and guiding future studies. In addition, sepsis syndrome is very prevalent and better management could help many patients in our ICUs.

CONCLUSION

In conclusion, positive fluid balances are frequently seen in patients with septic shock and may be related to worse outcomes. During the shock period, although the fluid balance was previously positive, it becomes much more positive. After recovery from shock, the fluid balance continues to increase. The more positive fluid balance group spent more time in the intensive care unit and hospital. Interventional studies evaluating the effects of meticulous fluid administration in septic shock patients are warranted.

  • Responsible editor: Luciano César Pontes de Azevedo

REFERÊNCIAS

  • 1
    Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis: less is more. Chest. 2008;133(1):252-63. Review.
  • 2
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98-104.
  • 3
    Réa-Neto A, Rezende E, Mendes CL, David CM, Dias FS, Schettino G, et al. Consenso brasileiro de monitorização e suporte hemodinâmico - Parte IV: monitorização da perfusão tecidual. Rev Bras Ter Intensiva. 2006;18(2):154-60.
  • 4
    Trzeciak S, Dellinger RP, Parrillo JE, Gugliemi M, Bajaj J Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM; Microcirculatory Alterations in Resuscitation and Shock Investigators. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49(1):88-98, 98. e1-2.
  • 5
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368-77.
  • 6
    Smith SH, Perner A. Higher vs. lower fluid volume for septic shock: clinical characteristics and outcome in unselected patients in a prospective, multicenter cohort. Crit Care. 2012;16(3):R76.
  • 7
    Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002;89(4):622-32. Review.
  • 8
    Garrido Adel P, Cruz RJ Jr, Poli de Figueiredo LF, Rocha e Silva M. Small volume of hypertonic saline as the initial fluid replacement in experimental hypodynamic sepsis. Crit Care. 2006;10(2):R62.
  • 9
    Singer M. The key advance in the treatment of sepsis in the last 10 years... doing less. Crit Care. 2006;10(1):122.
  • 10
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G; SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250-6. Review.
  • 11
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818-29.
  • 12
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707-10.
  • 13
    Levy CE. Manual de microbiologia clínica para o controle de infecção em serviços de saúde. Brasília: Editora Agência Nacional de Vigilância Sanitária; 2004.
  • 14
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.
  • 15
    Boyd JH, Forbes J, Nakada TA, Walley KR, Russel JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259-65.
  • 16
    Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, Cook DJ, Presneill JJ, Ayers D; VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877-87.
  • 17
    Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344-53.
  • 18
    Simmons RS, Berdine GG, Seidenfeld JJ, Prihoda TJ, Harris GD, Smith JD, et al. Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis. 1987;135(4):924-9.
  • 19
    Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122(6):2080-6.
  • 20
    Shuller D, Mitchell JP, Calandrino FS, Shuster DP. Fluid balance during pulmonary edema. Is fluid gain a marker or a cause of poor outcome? Chest. 1991;100(4):1068-75.
  • 21
    Alsous F, Khamiees M, De Girolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117(6):1749-54.
  • 22
    Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34(1):17-60. Erratum in Intensive Care Med. 2008;34(4):783-5.
  • 23
    Roman-Marchant O, Orellana-Jimenez CE, De Backer D, Melot C, Vincent JL. Septic shock of early or late onset: does it matter? Chest. 2004;126(1):173-8.
  • 24
    Takala J. Should we target blood pressure in sepsis? Crit Care Med. 2010;38(10 Suppl):S613-9.
  • 25
    Marik PE. Surviving sepsis: going beyond the guidelines. Ann Intensive Care. 2011;1(1):17.
  • 26
    Dirkes S. Acute Kidney Injury: not just acute renal failure anymore? Crit Care Nurse. 2011;31(1):37-49; quiz 50.
  • 27
    National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, de Boisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med.2006;354(24):2564-75.
  • 28
    Van Biesen W, Yegenaga I, Vanholder R, Verbeke F, Hoste E, Colardyn F, et al. Relationship between fluid status and its management on acuterenal failure (ARF) in intensive care unit (ICU) patients with sepsis: a prospective analysis. J Nephrol. 2005;18(1):54-60.
  • 29
    Vazquez AR, Masevicius FD, Giannoni R, Dubin A. Fluids in the postoperative period: effects of lack of adjustment to body weight. Rev Bras Ter Intensiva. 2011;23(2):170-5.
  • 30
    Varon J, Fromm RE Jr. Fluid balance in sepsis: are we ready for a negative balance? Chest. 2000;117(6):1535-6.
  • 31
    Lobo SM, de Oliveira NE. Clinical review: What are the best hemodynamic targets for noncardiac surgical patients? Crit Care. 2013;17(2):210.
  • 32
    Perren A, Markmann M, Merlani G, Marone C, Merlani P. Fluid balance in critically ill patients. Should we really rely on it? Minerva Anestesiol. 2011;77(8):802-11.

Publication Dates

  • Publication in this collection
    Mar 2015

History

  • Received
    25 Apr 2014
  • Accepted
    01 Sept 2014
Associação de Medicina Intensiva Brasileira - AMIB Rua Arminda, 93 - Vila Olímpia, CEP 04545-100 - São Paulo - SP - Brasil, Tel.: (11) 5089-2642 - São Paulo - SP - Brazil
E-mail: rbti.artigos@amib.com.br