Acessibilidade / Reportar erro

Initial inoculum density, evaluation time, and reproduction of Meloidogyne enterolobii in 'Paluma' guava plants

Densidade inicial de inóculo, época de avaliação e reprodução de Meloidogyne enterolobii em goiabeira 'Paluma'

ABSTRACT

Guava decline is a complex disease caused by the interaction between Meloidogyne enterolobii and Neocosmospora falciformis (Syn.: Fusarium solani). Thus, selecting M. enterolobii-resistant genotypes within the genus Psidium is essential for controlling this disease, and developing a resistant cultivar of Psidium guajava could significantly impact this issue. Thus, the objective of this study was to assess the response of the guava plants of the cultivar Paluma to different densities of M. enterolobii inoculum. Guava seedlings were inoculated with 500, 1,000, 5,000, 10,000, and 20,000 eggs + second-stage juveniles (J2) of M. enterolobii per plant. Root and shoot fresh weights, shoot dry weight, root length, plant height, and stem base diameter were evaluated at 70 and 135 days after inoculation (DAI). Total number of M. enterolobii eggs + J2 in the root system and nematode reproduction factor nematode were assessed. Nematode multiplication in roots was not proportional to increases in initial inoculum density; thus, the best plant responses to nematode multiplication in the evaluated cultivar were found for the lowest tested densities. The reproduction factor decreased as the inoculum density was increased, at both evaluations (70 and 135 DAI).

Keywords:
Psidium guajava ; Root-knot nematode; Reproduction factor

RESUMO

O declínio-da-goiabeira é uma doença complexa, causada por Meloidogyne enterolobii em interação com Neocosmospora falciformis (sin. Fusarium solani). Por causa disso, a seleção de genótipos resistentes a M. enterolobii dentro do gênero Psidium é muito importante para o controle da doença. A detecção desta resistência em Psidium guajava seria, ainda, de maior impacto. Assim, este trabalho teve por objetivo avaliar a reação de P. guajava ‘Paluma’ a diferentes densidades de inóculo de M. enterolobii. Mudas de goiabeira foram inoculadas com 500, 1000, 5000, 10000 e 20000 ovos + juvenis de segundo estádio (J2) de M. enterolobii/planta. Aos 70 e aos 135 dias após a inoculação (DAI), foram avaliadas as massas de matérias frescas de raiz, de parte aérea e de matéria seca de parte aérea, bem como o comprimento de raiz, a altura da planta e o diâmetro do colo. Os números totais de ovos + J2 de M. enterolobii nos sistemas radiculares e os fatores de reprodução foram as variáveis nematológicas determinadas. A multiplicação do nematoide nas raízes não foi proporcional ao aumento da densidade de inóculo inicial e, por isso, nas menores densidades, encontraram-se as melhores respostas de multiplicação do nematoide na cultivar avaliada. Observou-se, então, que, conforme se aumentou a densidade de inóculo, obtiveram-se menores fatores de reprodução médios nas duas avaliações (70 e 135 DAI).

Palavras-chave:
Psidium guajava ; Nematoide-das-galhas; Fator de reprodução

INTRODUCTION

Guava (Psidium guajava L.) is a tropical climate species; India and Brazil are the largest producing countries of white-fleshed and red-fleshed guava, respectively (ASHOKKUMAR et al., 2021ASHOKKUMAR, N. et al. Induction of defense-related proteins by selected plant growth regulators and biocontrol agents against guava root-knot nematode, Meloidogyne enterolobii. Journal of Nematology, 53: e2021-81, 2021.). São Paulo, Pernambuco, and Rio de Janeiro are the main guava producing states in Brazil (IBGE, 2024IBGE - Instituto Brasileiro de Geografia e Estatística. Produção agrícola municipal, Área plantada ou destinada à colheita, área colhida, quantidade produzida, rendimento médio e valor da produção das lavouras temporárias e permanentes. 2024. Disponível em: <https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html>. Acesso em: 21 abr 2024.
https://www.ibge.gov.br/estatisticas/eco...
). Guava is rich in vitamin C and phenolic compounds responsible for antimutagenic and antioxidant activities (FRANZON et al., 2009FRANZON, R. C. et al. Etnobotânica, usos e importância do gênero Psidium in: Araçás do gênero Psidium: principais espécies, ocorrência, descrição e usos. Planaltina, DF: Embrapa Cerrados, 2009. 48 p. (Documentos, 266).; ZAHIN; AHMAD; AQIL, 2017ZAHIN, M.; AHMAD, I.; AQIL, F. Antioxidant and antimutagenic potential of Psidium guajava leaf extracts. Drug and Chemical Toxicology, 40: 146-153, 2017.). These attributes, along with low production costs, make this fruit important for agriculture in several tropical and subtropical countries (RAI; JAISWAL; JAISWAL, 2009RAI, M. K.; JAISWAL, V. S.; JAISWAL, U. Shoot multiplication and plant regeneration of guava (Psidium guajava L.) from nodal explants of in vitro raised plantlets. Journal of Fruit and Ornamental Plant Research, 17: 29-38, 2009.; RODRÍGUEZ et al., 2010RODRÍGUEZ, N. N. et al. Genetic resources and breeding of guava (Psidium guajava L.) in Cuba. Biotecnología Aplicada, 27: 238-240, 2010.).

However, several diseases can occur in guava orchards, and root parasitism by the nematode Meloidogyne enterolobii Yang & Eisenback (Syn.: M. mayaguensis Rammah & Hirschmann), combined with the fungus Neocosmospora falciformis (L. Lombard and Crous, 2015, Syn.: Fusarium solani), is the main phytosanitary problem for guava production (GOMES et al., 2011GOMES, V. M. et al. Declínio da goiaba: uma doença complexa envolvendo Meloidogyne mayaguensis e Fusarium solani. Journal of Phytopathology. 159: 45-50, 2011.; BINDHU et al., 2022BINDHU, K. G. et al. Guava root knot nematode (Meloidogyne enterolobii): challenging threat to future guava production. The Pharma Innovation Journal, 11: 125-128, 2022.). Symptoms include leaf bronzing, stem and branch discoloration, changes in fruit shape and maturation, yellowing and falling of leaves, and plant death (CARNEIRO et al., 2001CARNEIRO, R. M. D. G. et al. Primeiro registro de Meloidogyne mayaguensis em goiabeira no Brasil. Nematologia Brasileira, 25: 223-228, 2001.; CASTRO et al., 2017CASTRO, J. M. C. et al. Reproduction of the guava root-knot nematode in Psidium accesses. Comunicata Scientiae, 8: 149-154, 2017.). Root galls, necrosis of large roots, and fewer secondary roots exacerbate symptoms of nutritional deficiency (GOMES et al., 2014GOMES, V. M. et al. Relationships between M. enterolobii and F. solani: spatial and temporal dynamics in the occurrence of guava decline. Nematoda, 1: e01014, 2014.; BELLÉ et al., 2019BELLÉ, C. et al. Reproduction of Meloidogyne enterolobii on weeds found in Brazil. Tropical Plant Pathology, 44: 380-384, 2019.; VELOSO; CÂMARA; SOUZA, 2021VELOSO, J. S.; CÂMARA, M. P. S.; SOUZA, R. M. Guava decline: updating its etiology from ‘Fusarium solani’ to Neocosmospora falciformis. European Journal of Plant Pathology, 159: 455-460, 2021.).

Different methodologies are used to classify plant resistance to root-knot nematodes. However, the lack of methodological standards for initial inoculum density is one of the challenges in characterizing genotype resistance, mainly in perennial crops, including guava (BURLA et al., 2010BURLA, R. S. et al. Comparação entre níveis de inóculo, época de avaliação e variáveis para seleção de Psidium spp. visando à resistência a Meloidogyne mayaguensis. Nematologia Brasileira, 34: 82-90, 2010.).

Several factors affect nematode reproduction, including environmental conditions, inoculum density, and plant exposure time to the nematode (WUYTS et al., 2007WUYTS, N. et al. Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant Pathology, 56: 878-890, 2007.). Resistance is often evaluated using high initial inoculum populations. Studies evaluating resistance in Psidium spp. have been conducted using inoculation of 10,000 or 20,000 M. enterolobii eggs (CARNEIRO et al., 2007CARNEIRO, R. M. D. G. et al. Resistance to Meloidogyne mayaguensis in Psidium spp. accessions and their grafting compatibility with P. guajava cv. Paluma. Fitopatologia Brasileira, 32: 281-284, 2007.; MARTINS et al., 2013MARTINS, L. S. S. et al. Parasitismo de Meloidogyne enterolobii em espécies de Myrtaceae. Revista Brasileira de Fruticultura, 35: 477-484, 2013.). However, high initial nematode populations can cause competition among individuals for feeding sites in the host, leading to reproduction factors below 1.0, characterizing resistance even in susceptible plants (GRECO; DI VITO, 2009GRECO, N.; DI VITO, M. Population dynamics and damage levels. In: PERRY, R. N.; MOENS, M.; STARR, J. L. (Eds.). Root-knot nematodes. Wallingford, UK: CABI International. 2009. p. 246-274.; STARR; MERCER, 2009STARR, J. L., E MERCER, C. F. Development of resistant varieties. In: PERRY, R. N.; MOENS, M.; STARR, E J. L. (Eds.), Root-knot nematodes. Wallingford, UK: CABI International, 2009. cap. 14, p. 326-337.).

Oliveira et al. (2019)OLIVEIRA, P. G. et al. Reação de acessos de Psidium spp. a diferentes níveis de inoculação com Meloidogyne enterolobii. Revista Caatinga, 32: 419-428, 2019. evaluated the response of Psidium spp. under three densities of M. enterolobii inoculum and found reductions in reproduction factor when using the highest tested densities. These findings reinforce the importance of evaluating the response of Psidium spp. to different densities of M. enterolobii inoculum, as already pointed out in evaluations conducted at 135 and 180 days after inoculation (BURLA et al., 2010BURLA, R. S. et al. Comparação entre níveis de inóculo, época de avaliação e variáveis para seleção de Psidium spp. visando à resistência a Meloidogyne mayaguensis. Nematologia Brasileira, 34: 82-90, 2010.). Similarly, the reproduction factor of M. incognita (Kofoid & White) Chitwood in cucumber (Cucumis sativus L.) decreased under inoculum densities higher than 2,000 eggs (KAYANI; MUKHTAR; HUSSAIN, 2018KAYANI, M. Z.; MUKHTAR, T.; HUSSAIN, M. A. Interaction between nematode inoculum density and plant age on growth and yield of cucumber and reproduction of Meloidogyne incognita. Pakistan Journal of Zoology, 50: 897-902, 2018.). Coffee plants (Coffea arabica L.) inoculated with 3,500, 5,000, and 6,500 eggs of M. paranaensis (Carneiro, Carneiro, Abrantes, Santos & Almeida) were evaluated at 120 and 180 days after inoculation, and the results showed that high inoculum levels can reduce nematode multiplication (HOLDERBAUM et al., 2021HOLDERBAUM, M. M. et al. Penetração, desenvolvimento e reprodução de Meloidogyne paranaensis em três genótipos de Coffea arabica. Tropical Plant Pathology, 46: 528-535, 2021.).

Thus, the objective of this study was to assess the response of a P. guajava cultivar Paluma to increasing densities of M. enterolobii inoculum at 70 and 135 days after inoculation.

MATERIAL AND METHODS

The experiment was conducted in a greenhouse (mean temperature of 28 °C) and in the Laboratory of Nematology of the Brazilian Agricultural Research Corporation (Embrapa Semiarid), in Petrolina, PE, Brazil (09°04'14.0''S and 40°19'03''W) from August to November 2021.

Guava seeds of the cultivar Paluma were sown in expanded polystyrene trays with a sterilized substrate; at 38 days after germination, the seedlings were transplanted to 3-liter plastic bags containing autoclaved soil (121 °C for one hour) and vermiculite (2:1 v v-1).

The Meloidogyne enterolobii inoculum was prepared using a pure population maintained on tomato plants (Solanum lycopersicum L. cultivar Rutgers) grown in autoclaved soil, following the methodology proposed by Hussey and Barker (1973)HUSSEY, R. S.; BARKER, K. B. A comparison of methods of collecting inocula for Meloidogyne spp., including a new technique. Plant Disease, 57: 1025-1028, 1973. modified by Boneti and Ferraz (1981)BONETI, J. I. S.; FERRAZ, S. Modificação do método de Hussey e Barker para extração de ovos de Meloidogyne exígua em raízes de cafeeiro. Fitopatologia Brasileira, 6: 553, 1981.. The suspension was calibrated in counting chambers under an optical microscope for the application of 500, 1,000, 2,000, 5,000, 10,000, and 20,000 eggs + second-stage juveniles (J2) per plant, according to the treatments. Inoculation was performed 15 days after transplanting by applying suspension with eggs and J2 into three holes of 2 cm deep equidistant 3 cm from the plant's stem base.

The plants were grown in soil fertilized with a 10-24-12 N-P-K formulation at 30 and 90 days after inoculation and irrigated daily according to water demand.

Root and shoot fresh weights (g) and shoot dry weight (g) were measured on a digital scale at 70 and 135 days after inoculation. Shoot dry weight was determined by drying plant tissues in a forced air circulation oven at 65 °C for 3 days. Root length (cm) and plant height (cm) were measured using a tape measure, and stem base diameter (cm) was measured using a digital caliper.

Root fresh weight was determined by separating the root systems from the aerial parts of the plants and washing them under running water; excess water was removed with paper towels. The roots were then processed, following the methodology proposed by Boneti and Ferraz (1981)BONETI, J. I. S.; FERRAZ, S. Modificação do método de Hussey e Barker para extração de ovos de Meloidogyne exígua em raízes de cafeeiro. Fitopatologia Brasileira, 6: 553, 1981.. The total numbers of M. enterolobii eggs + J2 in the root systems were determined in a counting chamber using an inverted microscope (Nikon® TS100).

The reproduction factor (RF) was determined by the equation RF = Pf / Pi, where Pf is final population and Pi is the initial population (Pi = 500; 1,000; 2,000; 5,000; 10,000; and 20,000 eggs + J2). Plants with RF < 1 were considered resistant, while those with RF > 1 were considered susceptible (OOSTENBRINK, 1966OOSTENBRINK, M. Major characteristics of the relation between nematodes and plants. Mededelingen Landbouw, 66: 1-46, 1966.).

The experiment was conducted in a completely randomized design with six replications, using a 2×6 factorial arrangement consisted of two evaluation times (70 and 135 after inoculation) and six inoculum densities (500; 1,000; 2,000; 5,000; 10,000; and 20,000 eggs + J2).

The obtained data were transformed into log(x+1), analyzed, and subjected to ANOVA and regression analysis using the programs Genes and Sisvar (CRUZ, 2013CRUZ, C. D. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35: 271- 276, 2013.; FERREIRA, 2019FERREIRA, D. F. SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics. 37: 529-535, 2019.).

RESULTS AND DISCUSSION

According to the analysis of variance, the interaction between the evaluated factors (inoculum density and evaluation time) had no significant effect on the assessed vegetative growth variables. Significant results were found for total number of eggs + J2 and reproduction factor of Meloidogyne enterolobii (Table 1).

Table 1
Analysis of variance for root fresh weight (RFW; g), root length (RL; cm), stem base diameter (SD; cm), plant height (PH; cm), shoot fresh weight (SFW; g) and shoot dry weight (SDW; g) of 'Paluma' guava plants, and total number of eggs + J2 (NEJ) and reproduction factor (RF) of Meloidogyne enterolobii.

The interaction between the factors was significant at 1% and 5%, respectively, for reproduction factor and total number of eggs + J2. This result highlights the importance of considering the initial inoculum density used and the evaluation time of experiments, mainly those searching for M. enterolobii-resistant genotypes. The evaluation timing of the experiment is essential, mainly for evaluating the root systems under adequate conditions.

The means found for total number of eggs + J2 were similar for the tested inoculum densities at both evaluations (Table 2). However, the results found at 70 and 135 days after inoculation (DAI) differed for the initial densities of 2,000 and 5,000 eggs + J2 per plant.

Table 2
Means for total number of eggs + J2 (NEJ2) and reproduction factor (RF) of Meloidogyne enterolobii at 70 and 135 days after inoculation of inoculation of 'Paluma' guava plants with different initial inoculum densities.

The reproduction factor (RF) depends on the total number of eggs. The highest mean RF found at 135 DAI was 1,276.2 for the initial inoculum density of 500 eggs + J2. However, the RF decreased as the inoculum density was increased, decreasing to 7.9 for the highest density (20,000 eggs + J2 per plant). Thus, high initial nematode populations can cause competition among individuals for feeding sites in roots of host plants. This results in RFs below 1.0 at the end of experiments, erroneously characterizing the plant's response as resistance, even for nematode-susceptible plants, confirming results found in other studies (GRECO; DI VITO, 2009GRECO, N.; DI VITO, M. Population dynamics and damage levels. In: PERRY, R. N.; MOENS, M.; STARR, J. L. (Eds.). Root-knot nematodes. Wallingford, UK: CABI International. 2009. p. 246-274.; STARR; MERCER, 2009STARR, J. L., E MERCER, C. F. Development of resistant varieties. In: PERRY, R. N.; MOENS, M.; STARR, E J. L. (Eds.), Root-knot nematodes. Wallingford, UK: CABI International, 2009. cap. 14, p. 326-337.).

The effect of the interaction between the factors was significant for RF (Table 1), showing that the selection of P. guajava genotypes for resistance to M. enterolobii can be affected by evaluation time and initial inoculum densities, as reported by Burla et al. (2010)BURLA, R. S. et al. Comparação entre níveis de inóculo, época de avaliação e variáveis para seleção de Psidium spp. visando à resistência a Meloidogyne mayaguensis. Nematologia Brasileira, 34: 82-90, 2010..

A significant difference between RF means was found in the first (70 DAI) and second (135 DAI) evaluation times for the inoculum densities of 2,000 and 5,000 eggs + J2 per plant. The RF at 135 DAI was approximately three-fold higher than that found at 70 DAI for the density of 2,000 eggs + J2 per plant. However, there was no significant difference between RFs found for the initial densities of 10,000 and 20,000 eggs + J2 at any of the evaluation times; RF decreased at 70 and 135 DAI, reaching 8.1 and 7.9, respectively.

Although a susceptibility response was confirmed by RFs higher than 1.0 (OOSTENBRINK, 1966OOSTENBRINK, M. Major characteristics of the relation between nematodes and plants. Mededelingen Landbouw, 66: 1-46, 1966.), the nematode multiplication in the roots was not proportional to increases in initial inoculum density. Oliveira et al. (2019)OLIVEIRA, P. G. et al. Reação de acessos de Psidium spp. a diferentes níveis de inoculação com Meloidogyne enterolobii. Revista Caatinga, 32: 419-428, 2019. evaluated the response of accessions of Psidium spp. to different densities of M. enterolobii inoculum and found similar results; the highest nematode multiplication was found for the lowest initial inoculum density tested; the highest RFs varied from 17 to 592 for the density of 600, and from 1.0 to 239 for the density of 1,600 eggs + J2 per plant; and the RF dropped to 3.0 when using an inoculum density of 2,000 eggs + J2 per plant.

Inoculum density and evaluation time are essential factors as they can affect the results regarding total number of eggs and RF, which are the most important nematode variables evaluated in experiments focused on identifying genotypes resistant to Meloidogyne species. The high significance of inoculum density as a source of variation found in the present study denotes the importance of this variable for determining resistance of accessions of Psidium spp. to M. enterolobii.

Martins et al. (2013)MARTINS, L. S. S. et al. Parasitismo de Meloidogyne enterolobii em espécies de Myrtaceae. Revista Brasileira de Fruticultura, 35: 477-484, 2013. evaluated an initial population of 20,000 eggs, divided into two inoculations of 10,000 eggs per plant with a 30-day interval, and found five accessions of Psidium spp. resistant and eight susceptible to M. enterolobii. Carneiro et al. (2007)CARNEIRO, R. M. D. G. et al. Resistance to Meloidogyne mayaguensis in Psidium spp. accessions and their grafting compatibility with P. guajava cv. Paluma. Fitopatologia Brasileira, 32: 281-284, 2007. found resistance in P. friedrichsthalianium (A. Berg) Nied. and P. cattleianum Sabine when evaluating an initial population of 10,000 eggs of M. enterolobii per plant. Similar results were found by Burla et al. (2010)BURLA, R. S. et al. Comparação entre níveis de inóculo, época de avaliação e variáveis para seleção de Psidium spp. visando à resistência a Meloidogyne mayaguensis. Nematologia Brasileira, 34: 82-90, 2010., who found significant differences in plant response to the nematode. Thus, evaluating the individual response of plants to the nematode is an important step due to the high frequency of false-positive results caused by the lack of infection sites in plants with developing root systems. The number of false-positive may be significantly higher at inoculum densities exceeding 10,000 eggs per plant.

The data of total number of eggs and RF fitted a polynomial regression model and were significant at 70 and 135 DAI (Table 3).

Table 3
Regression analysis for total number of eggs + J2 (NEJ2) and reproduction factor (RF) of Meloidogyne enterolobii at 70 and 135 days after inoculation of 'Paluma' guava plants with different initial inoculum densities.

According to the regression analysis, the R2 value found for RF exceeded 95% at both evaluation times, explaining the correlation between inoculum density and final nematode population. The means found for RF were lower at initial densities of 10,000 and 20,000 eggs + J2 but greater at lower initial inoculum densities at both evaluation times.

Kayani, Mukhtar and Hussain (2018)KAYANI, M. Z.; MUKHTAR, T.; HUSSAIN, M. A. Interaction between nematode inoculum density and plant age on growth and yield of cucumber and reproduction of Meloidogyne incognita. Pakistan Journal of Zoology, 50: 897-902, 2018. compared the response of cucumber cultivars, susceptible and resistant to M. incognita, under different inoculum densities and found reductions in RF as the inoculum density was increased, with inverse correlations shown in regression equations. Débia et al. (2020)DÉBIA, P. J. G. et al. Meloidogyne javanica parasitism on the vegetative growth and nutritional quality of carrots. Ciência Rural, 50: e20190585, 2020. evaluated carrot plants (Daucus carota L.) and found reductions in the number of nematodes per root system as the inoculum density was increased. Similarly, Andreazzi et al. (2015)ANDREAZZI, E. et al. Behavior of ‘IPR 100’ and ‘Apoatan IAC 2258’ coffee cultivars under diferente infestation levels of Meloidogyne paranaensis inoculum. Australian Journal of Crop Science, 9: 1069-1074, 2015. evaluated population densities of M. paranaensis in different coffee genotypes and reported that population densities between 500 and 3,000 eggs per plant were sufficient to distinguish resistant from susceptible genotypes based on the results of RF and total number of eggs + J2 at 110 DAI.

The findings of the present study showed a reduction in RF at both evaluation times as the initial inoculum density was increased. Thus, as indicated in previous studies (BURLA et al., 2010BURLA, R. S. et al. Comparação entre níveis de inóculo, época de avaliação e variáveis para seleção de Psidium spp. visando à resistência a Meloidogyne mayaguensis. Nematologia Brasileira, 34: 82-90, 2010.; OLIVEIRA et al., 2019OLIVEIRA, P. G. et al. Reação de acessos de Psidium spp. a diferentes níveis de inoculação com Meloidogyne enterolobii. Revista Caatinga, 32: 419-428, 2019.), evaluating plant resistance under different inoculum densities, including low densities, is essential to prevent the discard of promising guava genotypes by breeding programs due misinterpretation of resistance responses to M. enterolobii.

CONCLUSION

The multiplication of M. enterolobii in roots of P. guajava plants of the cultivar Paluma was not proportional to increases in initial inoculum density. The reproduction factor decreased as the initial inoculum density was increased, at both evaluation times (70 and 135 days after inoculation).

ACKNOWLEDGEMENTS

The authors thank the Bahia State Research Support Foundation (FAPESB) for granting a scholarship to the first author; the Graduate Program in Plant Genetic Resources of the State University of Feira de Santana (UEFS); and the Brazilian Agricultural Research Corporation (Embrapa) for providing a greenhouse and Nematology Laboratory for conducting the experiments.

REFERENCES

  • ANDREAZZI, E. et al. Behavior of ‘IPR 100’ and ‘Apoatan IAC 2258’ coffee cultivars under diferente infestation levels of Meloidogyne paranaensis inoculum. Australian Journal of Crop Science, 9: 1069-1074, 2015.
  • ASHOKKUMAR, N. et al. Induction of defense-related proteins by selected plant growth regulators and biocontrol agents against guava root-knot nematode, Meloidogyne enterolobii Journal of Nematology, 53: e2021-81, 2021.
  • BELLÉ, C. et al. Reproduction of Meloidogyne enterolobii on weeds found in Brazil. Tropical Plant Pathology, 44: 380-384, 2019.
  • BINDHU, K. G. et al. Guava root knot nematode (Meloidogyne enterolobii): challenging threat to future guava production. The Pharma Innovation Journal, 11: 125-128, 2022.
  • BONETI, J. I. S.; FERRAZ, S. Modificação do método de Hussey e Barker para extração de ovos de Meloidogyne exígua em raízes de cafeeiro. Fitopatologia Brasileira, 6: 553, 1981.
  • BURLA, R. S. et al. Comparação entre níveis de inóculo, época de avaliação e variáveis para seleção de Psidium spp. visando à resistência a Meloidogyne mayaguensis Nematologia Brasileira, 34: 82-90, 2010.
  • CARNEIRO, R. M. D. G. et al. Primeiro registro de Meloidogyne mayaguensis em goiabeira no Brasil. Nematologia Brasileira, 25: 223-228, 2001.
  • CARNEIRO, R. M. D. G. et al. Resistance to Meloidogyne mayaguensis in Psidium spp. accessions and their grafting compatibility with P. guajava cv. Paluma. Fitopatologia Brasileira, 32: 281-284, 2007.
  • CASTRO, J. M. C. et al. Reproduction of the guava root-knot nematode in Psidium accesses. Comunicata Scientiae, 8: 149-154, 2017.
  • CRUZ, C. D. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35: 271- 276, 2013.
  • DÉBIA, P. J. G. et al. Meloidogyne javanica parasitism on the vegetative growth and nutritional quality of carrots. Ciência Rural, 50: e20190585, 2020.
  • FERREIRA, D. F. SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics 37: 529-535, 2019.
  • FRANZON, R. C. et al. Etnobotânica, usos e importância do gênero Psidium in: Araçás do gênero Psidium: principais espécies, ocorrência, descrição e usos. Planaltina, DF: Embrapa Cerrados, 2009. 48 p. (Documentos, 266).
  • GOMES, V. M. et al. Declínio da goiaba: uma doença complexa envolvendo Meloidogyne mayaguensis e Fusarium solani Journal of Phytopathology 159: 45-50, 2011.
  • GOMES, V. M. et al. Relationships between M. enterolobii and F. solani: spatial and temporal dynamics in the occurrence of guava decline. Nematoda, 1: e01014, 2014.
  • GRECO, N.; DI VITO, M. Population dynamics and damage levels. In: PERRY, R. N.; MOENS, M.; STARR, J. L. (Eds.). Root-knot nematodes Wallingford, UK: CABI International. 2009. p. 246-274.
  • HOLDERBAUM, M. M. et al. Penetração, desenvolvimento e reprodução de Meloidogyne paranaensis em três genótipos de Coffea arabica Tropical Plant Pathology, 46: 528-535, 2021.
  • HUSSEY, R. S.; BARKER, K. B. A comparison of methods of collecting inocula for Meloidogyne spp., including a new technique. Plant Disease, 57: 1025-1028, 1973.
  • IBGE - Instituto Brasileiro de Geografia e Estatística. Produção agrícola municipal, Área plantada ou destinada à colheita, área colhida, quantidade produzida, rendimento médio e valor da produção das lavouras temporárias e permanentes 2024. Disponível em: <https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html>. Acesso em: 21 abr 2024.
    » https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html
  • KAYANI, M. Z.; MUKHTAR, T.; HUSSAIN, M. A. Interaction between nematode inoculum density and plant age on growth and yield of cucumber and reproduction of Meloidogyne incognita Pakistan Journal of Zoology, 50: 897-902, 2018.
  • MARTINS, L. S. S. et al. Parasitismo de Meloidogyne enterolobii em espécies de Myrtaceae. Revista Brasileira de Fruticultura, 35: 477-484, 2013.
  • OLIVEIRA, P. G. et al. Reação de acessos de Psidium spp. a diferentes níveis de inoculação com Meloidogyne enterolobii. Revista Caatinga, 32: 419-428, 2019.
  • OOSTENBRINK, M. Major characteristics of the relation between nematodes and plants. Mededelingen Landbouw, 66: 1-46, 1966.
  • RAI, M. K.; JAISWAL, V. S.; JAISWAL, U. Shoot multiplication and plant regeneration of guava (Psidium guajava L.) from nodal explants of in vitro raised plantlets. Journal of Fruit and Ornamental Plant Research, 17: 29-38, 2009.
  • RODRÍGUEZ, N. N. et al. Genetic resources and breeding of guava (Psidium guajava L.) in Cuba. Biotecnología Aplicada, 27: 238-240, 2010.
  • STARR, J. L., E MERCER, C. F. Development of resistant varieties. In: PERRY, R. N.; MOENS, M.; STARR, E J. L. (Eds.), Root-knot nematodes Wallingford, UK: CABI International, 2009. cap. 14, p. 326-337.
  • VELOSO, J. S.; CÂMARA, M. P. S.; SOUZA, R. M. Guava decline: updating its etiology from ‘Fusarium solani’ to Neocosmospora falciformis European Journal of Plant Pathology, 159: 455-460, 2021.
  • WUYTS, N. et al. Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant Pathology, 56: 878-890, 2007.
  • ZAHIN, M.; AHMAD, I.; AQIL, F. Antioxidant and antimutagenic potential of Psidium guajava leaf extracts. Drug and Chemical Toxicology, 40: 146-153, 2017.

Publication Dates

  • Publication in this collection
    02 Sept 2024
  • Date of issue
    2024

History

  • Received
    30 Aug 2022
  • Accepted
    11 Jan 2024
Universidade Federal Rural do Semi-Árido Avenida Francisco Mota, número 572, Bairro Presidente Costa e Silva, Cep: 5962-5900, Telefone: 55 (84) 3317-8297 - Mossoró - RN - Brazil
E-mail: caatinga@ufersa.edu.br