Acessibilidade / Reportar erro

Mechanisms of action of Lactobacillus spp. in the treatment of oral candidiasis

Mecanismos de ação de Lactobacillus spp. no tratamento de candidíase oral

Abstract

Candida albicans is often associated with oral candidiasis, and drug-resistance profiles have contributed to an increase in morbidity and mortality. It is known that Lactobacillus spp. acts by competing for adhesion to the epithelium, absorption of nutrients and modulation of the human microbiota. Therefore, they are important to assist in the host's microbiological balance and reduce the growth of Candida spp. Until now, there have been no reports in the literature of reviews correlating to the use of Lactobacillus spp. in the treatment of oral candidiasis. Thus, this review aims to highlight the mechanisms of action of Lactobacillus spp. and methods that can be used in the treatment of oral candidiasis. This is a study carried out through the databases PubMed Central and Scientific Electronic Library Online, using the following keywords: Oral Candidiasis and Lactobacillus. Original articles about oral candidiasis were included, with both in vitro and in vivo analyses, and published from 2012 to 2022. Lactobacillus rhamnosus was the most common microorganism used in the experiments against Candida, acting mainly in the reduction of biofilm, filamentation, and competing for adhesion sites of Candida spp. Among in vivo studies, most researchers used immunosuppressed mouse modelsof Candida infection. The studies showed that Lactobacillus has a great potential as a probiotic, acting mainly in the prevention and treatment of mucosal diseases. Thus, the use of Lactobacillus may be a good strategy for the treatment of oral candidiasis.

Keywords:
oral candidiasis; probiotics; Lactobacillus; Candida

Resumo

Candida albicans está frequentemente associada à candidíase oral e os perfis de resistência aos medicamentos têm contribuído para o aumento da morbidade e mortalidade. Sabe-se que Lactobacillus spp. atuam competindo pela adesão ao epitélio, absorção de nutrientes e modulam a microbiota humana. Portanto, são importantes para auxiliar no equilíbrio microbiológico do hospedeiro e reduzir o crescimento de Candida spp. Até o momento não há relatos na literatura de revisões correlacionando o uso de Lactobacillus spp. no tratamento da candidíase oral. Assim, esta revisão tem como objetivo destacar os mecanismos de ação de Lactobacillus spp. e métodos que podem ser utilizados no tratamento da candidíase oral. Trata-se de um estudo realizado a partir da busca em bases como: PubMed Central e Scientific Electronic Library Online, utilizando as seguintes palavras-chave: “Oral Candidiasis” e “Lactobacillus”. Foram incluídos artigos originais sobre candidíase oral, com análises in vitro e in vivo, publicados de 2012 a 2022. Lactobacillus rhamnosus foi o microrganismo mais utilizado nos experimentos contra Candida, atuando principalmente na redução de biofilme, filamentação e competindo por sítios de adesão de Candida spp. Entre os estudos in vivo, a maioria dos pesquisadores utilizou modelos de camundongos imunossuprimidos para infecção por Candida. Os estudos mostraram que os Lactobacillus possuem grande potencial como probiótico, atuando principalmente na prevenção e tratamento de doenças da mucosa. Assim, o uso de Lactobacillus pode ser uma boa estratégia para o tratamento da candidíase oral.

Palavras-chave:
candidíase oral; probióticos; Lactobacillus; Candida

1. Introduction

The microbiota that colonizes the skin and mucous membranes surfaces are essential to prevent the invasion and colonization of pathogens and protect and defend the organism. The oral cavity comprises a complex microbiota of bacteria, archaea, fungi, viruses, and protozoa. Although fungi are present in lower numbers, Candida spp. is a common and opportunistic pathogen and one of the leading causes of human infections. Worldwide, about 700,000 cases are reported (Sardi et al., 2013SARDI, J.C.O., SCORZONI, L., BERNARDI, T., FUSCO-ALMEIDA, A.M. and GIANNINI, M.M., 2013. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology, vol. 62, no. 1, pp. 10-24. http://doi.org/10.1099/jmm.0.045054-0. PMid:23180477.
http://doi.org/10.1099/jmm.0.045054-0...
; Hillman et al., 2017HILLMAN, E.T., LU, H., YAO, T. and NAKATSU, C.H., 2017. Microbial ecology along the gastrointestinal tract. Microbes and Environments, vol. 32, no. 4, pp. 300-313. http://doi.org/10.1264/jsme2.ME17017. PMid:29129876.
http://doi.org/10.1264/jsme2.ME17017...
; Bongomin et al., 2017BONGOMIN, F., GAGO, S., OLADELE, R. and DENNING, D., 2017. Global and multi-national prevalence of fungal diseases-estimate precision. Journal of Fungi, vol. 3, no. 4, pp. 57. http://doi.org/10.3390/jof3040057. PMid:29371573.
http://doi.org/10.3390/jof3040057...
).

Due to the AIDS (Acquired Immunodeficiency Syndrome) epidemic in the 1980s, interest in oral infections increased, primarily because of the prevalence of oral candidiasis as an opportunistic infection in seropositive individuals (Lewis and Williams, 2017LEWIS, M.A.O. and WILLIAMS, D.W., 2017. Diagnosis and management of oral candidosis. British Dental Journal, vol. 223, no. 9, pp. 675-681. http://doi.org/10.1038/sj.bdj.2017.886. PMid:29123282.
http://doi.org/10.1038/sj.bdj.2017.886...
). Imbalances in the oral microbiota favor the proliferation of Candida spp., which leads to oral candidiasis. This pathology can affect all types of patients. However, it is more common in immunocompromised patients, such as those infected with HIV, hepatitis, cancer, or prolonged antimicrobial therapy, and can be fatal if disseminated (Černáková and Rodrigues, 2020ČERNÁKOVÁ, L. and RODRIGUES, C.F., 2020. Microbial interactions and immunity response in oral Candida species. Future Microbiology, vol. 15, no. 17, pp. 1653-1677. http://doi.org/10.2217/fmb-2020-0113. PMid:33251818.
http://doi.org/10.2217/fmb-2020-0113...
; Gheorghe et al., 2021GHEORGHE, D.C., NICULESCU, A.G., BÎRCĂ, A.C. and GRUMEZESCU, A.M., 2021. Biomaterials for the prevention of oral candidiasis development. Pharmaceutics, vol. 13, no. 6, pp. 803. http://doi.org/10.3390/pharmaceutics13060803. PMid:34072188.
http://doi.org/10.3390/pharmaceutics1306...
).

Oral candidiasis is a disease whose inflammation of the mucosa can occur under different clinical manifestations, either in the form of acute pseudomembranous candidiasis, acute and chronic erythematous candidiasis, or as chronic hyperplastic candidiasis (Quindós et al., 2019QUINDÓS, G., GIL-ALONSO, S., MARCOS-ARIAS, C., SEVILLANO, E., MATEO, E., JAUREGIZAR, N. and ERASO, E., 2019. Therapeutic tools for oral candidiasis: current and new antifungal drugs. Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 24, no. 2, pp. e172-e180. http://doi.org/10.4317/medoral.22978. PMid:30818309.
http://doi.org/10.4317/medoral.22978...
; Williams and Lewis, 2011WILLIAMS, D. and LEWIS, M., 2011. Pathogenesis and treatment of oral candidosis. Journal of Oral Microbiology, vol. 3, no. 1, pp. 5771. http://doi.org/10.3402/jom.v3i0.5771. PMid:21547018.
http://doi.org/10.3402/jom.v3i0.5771...
).

Despite studies describing an increase in the prevalence of oral candidiasis, mainly affecting immunocompromised patients and the elderly, these mycoses remain neglected, with few epidemiological surveillance and insufficient progress in diagnostic and therapeutic methods (Justiz Vaillant and Qurie, 2023JUSTIZ VAILLANT, A.A. and QURIE, A., 2023 [viewed 27 December 2023]. Immunodeficiency [online]. Treasure Island: StatPearls. Available from: https://pubmed.ncbi.nlm.nih.gov/29763203/
https://pubmed.ncbi.nlm.nih.gov/29763203...
; Bessa et al., 2021BESSA, E.R.L., OLIVEIRA, L.D., MUNIZ, A.B., SILVA, G.D.G., FERNANDES, O.C.C. and HERKRATH, F.J., 2021. Epidemiology of oral candidiasis: a household-based population survey in a medium-sized city in Amazonas. Research. Social Development, vol. 10, no. 10, e127101018664. http://doi.org/10.33448/rsd-v10i10.18664.
http://doi.org/10.33448/rsd-v10i10.18664...
).

In Brazil, systemic mycoses are not on the national list of notifiable diseases and are not in the routine of epidemiological surveillance. Therefore, there is a lack of epidemiological data on the occurrence, magnitude, and transcendence of infections caused by Candida (Brasil, 2021BRASIL. Ministério da Saúde, 2021 [viewed 27 December 2021]. Systemic candidiasis [online]. Available from: http://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/c/candidiase-sistemica
http://www.gov.br/saude/pt-br/assuntos/s...
).

According to the Centers for Disease Control and Prevention (CDC), in 2019, there were 34,800 hospitalizations and 1,700 deaths due to Candida spp. drug-resistance. Of these, 323 cases were related to multidrug-resistant Candida auris (CDC, 2019CENTERS FOR DISEASE CONTROL AND PREVENTION – CDC, 2019 [viewed 27 December 2021]. Antibiotic resistance threats in the United States [online]. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html
https://www.cdc.gov/drugresistance/bigge...
). Thus, fungal infections are a significant problem for public health (Brown et al., 2012BROWN, G.D., DENNING, D.W., GOW, N.A., LEVITZ, S.M., NETEA, M.G. and WHITE, T.C., 2012. Hidden killers: human fungal infections. Science Translational Medicine, vol. 4, no. 165, pp. 165rv13. http://doi.org/10.1126/scitranslmed.3004404. PMid:23253612.
http://doi.org/10.1126/scitranslmed.3004...
).

Of the 200 species that make up the genus Candida, about 20 are recognized as causing infections (Turner and Butler, 2014TURNER, S.A. and BUTLER, G., 2014. The Candida pathogenic species complex. Cold Spring Harbor Perspectives in Medicine, vol. 4, no. 9, pp. a019778. http://doi.org/10.1101/cshperspect.a019778. PMid:25183855.
http://doi.org/10.1101/cshperspect.a0197...
; Macêdo et al., 2009MACÊDO, D.P.C., FARIAS, A.M.A., LIMA, N.R.G., SILVA, V.K.A., LEAL, A.F.G. and NEVES, R.P., 2009. Opportunistic yeast infections and enzymatic profile of the etiological agents. Journal of the Brazilian Society of Tropical Medicine, vol. 42, no. 2, pp. 188-191. http://doi.org/10.1590/S0037-8682200900020001. PMid:19448940.). Candida albicans is often associated with oral candidiasis, considered the primary agent of mucosal and systemic infections, in addition to being related to about 70% of infections caused by fungi in the world (Morad et al., 2018MORAD, H.O., WILD, A.M., WIEHR, S., DAVIES, G., MAURER, A., PICHLER, B.J. and THORNTON, C.R., 2018. Pre-clinical imaging of invasive Candidiasis using ImmunoPET/MR. Frontiers in Microbiology, vol. 9, pp. 1996. http://doi.org/10.3389/fmicb.2018.01996. PMid:30190717.
http://doi.org/10.3389/fmicb.2018.01996...
). Non-albicans species associated with oral candidiasis include Candida glabrata, Candida parapsilosis, Candida tropicalis and Candida krusei (Mushi et al., 2016MUSHI, M.F., MTEMISIKA, C.I., BADER, O., BII, C., MIRAMBO, M.M., GROß, U. and MSHANA, S.E., 2016. High oral carriage of non-albicans Candida spp. among HIV-infected individuals. International Journal of Infectious Diseases, vol. 49, pp. 185-188. http://doi.org/10.1016/j.ijid.2016.07.001. PMid:27401585.
http://doi.org/10.1016/j.ijid.2016.07.00...
). C. glabrata and C. tropicalis are related to high rates of morbidity and mortality (Macêdo et al., 2009MACÊDO, D.P.C., FARIAS, A.M.A., LIMA, N.R.G., SILVA, V.K.A., LEAL, A.F.G. and NEVES, R.P., 2009. Opportunistic yeast infections and enzymatic profile of the etiological agents. Journal of the Brazilian Society of Tropical Medicine, vol. 42, no. 2, pp. 188-191. http://doi.org/10.1590/S0037-8682200900020001. PMid:19448940.; Richardson and Lass‐Flörl, 2008RICHARDSON, M. and LASS‐FLÖRL, C., 2008. Changing epidemiology of systemic fungal infections. Clinical Microbiology and Infection, vol. 14, suppl. 4, pp. 5-24. http://doi.org/10.1111/j.1469-0691.2008.01978.x. PMid:18430126.
http://doi.org/10.1111/j.1469-0691.2008....
).

C. albicans can have different morphologies, including yeast, pseudohyphae and hypha (Saghrouni et al., 2013SAGHROUNI, F.B.A.J., ABDELJELIL, J.B., BOUKADIDA, J. and SAID, M.B., 2013. Molecular methods for strain typing of Candida albicans: a review. Journal of Applied Microbiology, vol. 114, no. 6, pp. 1559-1574. http://doi.org/10.1111/jam.12132. PMid:23311504.
http://doi.org/10.1111/jam.12132...
). Infection occurs due to several virulence factors, which make fungal colonization successful (Deorukhkar and Roushani, 2017DEORUKHKAR, S.C. and ROUSHANI, S., 2017. Virulence traits contributing to pathogenicity of Candida species. Journal of Microbiology & Experimentation, vol. 5, no. 1, pp. 62-65. http://doi.org/10.15406/jmen.2017.05.00140.
http://doi.org/10.15406/jmen.2017.05.001...
). The yeast should settle in the oral cavity for the disease to establish itself, and this adhesion mechanism is a determining factor for fungal colonization. Furthermore, as host defense factors, salivary flow and swallowing should not completely remove the fungal cells attached to mucosal surfaces (Vila et al., 2020VILA, T., SULTAN, A.S., MONTELONGO-JAUREGUI, D. and JABRA-RIZK, M.A., 2020. Oral candidiasis: a disease of opportunity. Journal of Fungi, vol. 6, no. 1, pp. 15. http://doi.org/10.3390/jof6010015. PMid:31963180.
http://doi.org/10.3390/jof6010015...
).

Conventional antifungals are used for treatment. However, due to the increase in resistant Candida strains, the effectiveness of these drugs becomes impaired. Thus, searching for new therapies is relevant (Muñoz et al., 2020MUÑOZ, J.E., ROSSI, D.C., JABES, D.L., BARBOSA, D.A., CUNHA, F.F., NUNES, L.R., ARRUDA, D.C. and TABORDA, C.P., 2020. In vitro and In vivo inhibitory activity of limonene against different isolates of Candida spp. Journal of Fungi, vol. 6, no. 3, pp. 183. http://doi.org/10.3390/jof6030183. PMid:32971732.
http://doi.org/10.3390/jof6030183...
). Treatment depends on early diagnosis and identification of candidiasis forms, risk factors and the use of suitable antifungal drugs (Garcia-Cuesta et al., 2014GARCIA-CUESTA, C., SARRION-PÉREZ, M.G. and BAGÁN, J.V., 2014. Current treatment of oral candidiasis: a literature review. Journal of Clinical and Experimental Dentistry, vol. 6, no. 5, e576-e582. http://doi.org/10.4317/jced.51798. PMid:25674329.
http://doi.org/10.4317/jced.51798...
).

Currently, four classes of antifungals against Candida are available: polyenes, azoles, echinocandins and 5-flucytosine, a fluorinated cytosine analogue (Bhattacharya et al., 2020BHATTACHARYA, S., SAE-TIA, S. and FRIES, B.C., 2020. Candidiasis and mechanisms of antifungal resistance. Antibiotics, vol. 9, no. 6, pp. 312. http://doi.org/10.3390/antibiotics9060312. PMid:32526921.
http://doi.org/10.3390/antibiotics906031...
). However, drug resistance profiles among pathogenic fungi have increased and contributed to mortality (Muñoz et al., 2020MUÑOZ, J.E., ROSSI, D.C., JABES, D.L., BARBOSA, D.A., CUNHA, F.F., NUNES, L.R., ARRUDA, D.C. and TABORDA, C.P., 2020. In vitro and In vivo inhibitory activity of limonene against different isolates of Candida spp. Journal of Fungi, vol. 6, no. 3, pp. 183. http://doi.org/10.3390/jof6030183. PMid:32971732.
http://doi.org/10.3390/jof6030183...
; Ravikumar et al., 2015RAVIKUMAR, S., WIN, M.S. and CHAI, L.Y., 2015. Optimizing outcomes in immunocompromised hosts: understanding the role of immunotherapy in invasive fungal diseases. Frontiers in Microbiology, vol. 6, pp. 1322. http://doi.org/10.3389/fmicb.2015.01322. PMid:26635780.
http://doi.org/10.3389/fmicb.2015.01322...
).

In 2016, the Infectious Diseases Society of America (IDSA) published updated guidelines on treating oral candidiasis (Pappas et al., 2016PAPPAS, P.G., KAUFFMAN, C.A., ANDES, D.R., CLANCY, C.J., MARR, K.A., OSTROSKY-ZEICHNER, L., REBOLI, A.C., SCHUSTER, M.G., VAZQUEZ, J.A., WALSH, T.J., ZAOUTIS, T.E. and SOBEL, J.D., 2016. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, vol. 62, no. 4, pp. e1-e50. http://doi.org/10.1093/cid/civ933. PMid:26679628.
http://doi.org/10.1093/cid/civ933...
). One tablet of miconazole 50 mg should be used once a day for seven to fourteen days for mild illness. Alternatively, nystatin may be used four times a day for seven to fourteen days. Oral Fluconazole during this same period should be used in cases of moderate-to-severe oral candidiasis. Despite being widely used for a long time, Fluconazole has still considered a good choice due to its excellent bioavailability, low toxicity, and few adverse effects (Pappas et al., 2016PAPPAS, P.G., KAUFFMAN, C.A., ANDES, D.R., CLANCY, C.J., MARR, K.A., OSTROSKY-ZEICHNER, L., REBOLI, A.C., SCHUSTER, M.G., VAZQUEZ, J.A., WALSH, T.J., ZAOUTIS, T.E. and SOBEL, J.D., 2016. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, vol. 62, no. 4, pp. e1-e50. http://doi.org/10.1093/cid/civ933. PMid:26679628.
http://doi.org/10.1093/cid/civ933...
; Quindós et al., 2019QUINDÓS, G., GIL-ALONSO, S., MARCOS-ARIAS, C., SEVILLANO, E., MATEO, E., JAUREGIZAR, N. and ERASO, E., 2019. Therapeutic tools for oral candidiasis: current and new antifungal drugs. Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 24, no. 2, pp. e172-e180. http://doi.org/10.4317/medoral.22978. PMid:30818309.
http://doi.org/10.4317/medoral.22978...
). It is important to note that some Candida species are intrinsically resistant to antifungal agents, and Fluconazole's widespread use in prophylaxis has contributed to increasing cases of resistance (Diniz-Neto et al., 2024DINIZ-NETO, H., SILVA, S.L., CORDEIRO, L.V., SILVA, D.F., OLIVEIRA, R.F., ATHAYDE-FILHO, P.F., OLIVEIRA-FILHO, A.A., GUERRA, F.Q.S. and LIMA, E.O., 2024. Antifungal activity of 2-chloro-N-phenylacetamide: a new molecule with fungicidal and antibiofilm activity against fluconazole-resistant Candida spp. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, e255080. http://doi.org/10.1590/1519-6984.255080.
http://doi.org/10.1590/1519-6984.255080...
; Sardi et al., 2013SARDI, J.C.O., SCORZONI, L., BERNARDI, T., FUSCO-ALMEIDA, A.M. and GIANNINI, M.M., 2013. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology, vol. 62, no. 1, pp. 10-24. http://doi.org/10.1099/jmm.0.045054-0. PMid:23180477.
http://doi.org/10.1099/jmm.0.045054-0...
). Furthermore, C. albicans can form biofilms and secrete hydrolytic enzymes that are considered virulence factors (Nicholls et al., 2011NICHOLLS, S., MACCALLUM, D.M., KAFFARNIK, F.A., SELWAY, L., PECK, S.C. and BROWN, A.J., 2011. Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans. Fungal Genetics and Biology, vol. 48, no. 3, pp. 297-305. http://doi.org/10.1016/j.fgb.2010.08.010. PMid:20817114.
http://doi.org/10.1016/j.fgb.2010.08.010...
).

Thus, it is necessary to develop therapeutic alternatives associated with the use of new antifungal drugs, probiotics and even peptides with antifungal activities (Marcos-Arias et al., 2011MARCOS-ARIAS, C., ERASO, E., MADARIAGA, L. and QUINDÓS, G., 2011. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complementary and Alternative Medicine, vol. 11, no. 1, pp. 119. http://doi.org/10.1186/1472-6882-11-119. PMid:22118215.
http://doi.org/10.1186/1472-6882-11-119...
). Probiotics are live microorganisms beneficial to the health of their host. The International Scientific Association of Probiotics and Prebiotics (ISAPP) defines products that can be classified as probiotics and prebiotics, and these include medicines, formulas and supplements that benefit human health. The most commonly used strains include Bifidobacterium spp., Lactobacillus spp. and Saccharomyces spp. These probiotics compete for adherence to the epithelium, uptake of nutrients, and modulate the microbiota to modify the microbiological balance of the host and reduce the growth of pathogens, such as Candida spp. (Amara and Shibl, 2015AMARA, A.A. and SHIBL, A., 2015. Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharmaceutical Journal, vol. 23, no. 2, pp. 107-114. http://doi.org/10.1016/j.jsps.2013.07.001. PMid:25972729.
http://doi.org/10.1016/j.jsps.2013.07.00...
; Hill et al., 2014HILL, C., GUARNER, F., REID, G., GIBSON, G.R., MERENSTEIN, D.J., POT, B., MORELLI, L., CANANI, R.B., FLINT, H.J., SALMINEN, S., CALDER, P.C. and SANDERS, M.E., 2014. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, vol. 11, no. 8, pp. 506-514. http://doi.org/10.1038/nrgastro.2014.66. PMid:24912386.
http://doi.org/10.1038/nrgastro.2014.66...
; Rossoni et al., 2018ROSSONI, R.D., BARROS, P.P., DE ALVARENGA, J.A., RIBEIRO, F.C., VELLOSO, M.D.S., FUCHS, B.B., MYLONAKIS, E., JORGE, A.O.C. and JUNQUEIRA, J.C., 2018. Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis. Biofouling, vol. 34, no. 2, pp. 212-225. http://doi.org/10.1080/08927014.2018.1425402. PMid:29380647.
http://doi.org/10.1080/08927014.2018.142...
). In addition, Lactobacillus species secrete products that modulate the expression of C. albicans genes and inhibit biofilm formation (James et al., 2016JAMES, K.M., MACDONALD, K.W., CHANYI, R.M., CADIEUX, P.A. and BURTON, J.P., 2016. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. Journal of Medical Microbiology, vol. 65, no. 4, pp. 328-336. http://doi.org/10.1099/jmm.0.000226. PMid:26847045.
http://doi.org/10.1099/jmm.0.000226...
).

Research with Lactobacillus spp. demonstrate that these bacteria reduce the growth of Candida, inhibit the formation of biofilms, and act on the immune response, stimulating the release of cytokines by macrophages and the expression of pattern recognition receptors in response to C. albicans, which may improve symptoms and invasive infections (Matsubara et al., 2016MATSUBARA, V.H., BANDARA, H.M.H.N., MAYER, M.P. and SAMARANAYAKE, L.P., 2016. Probiotics as antifungals in mucosal candidiasis. Clinical Infectious Diseases, vol. 62, no. 9, pp. 1143-1153. http://doi.org/10.1093/cid/ciw038. PMid:26826375.
http://doi.org/10.1093/cid/ciw038...
, 2017MATSUBARA, V.H., ISHIKAWA, K.H., ANDO-SUGUIMOTO, E.S., BUENO-SILVA, B., NAKAMAE, A.E. and MAYER, M.P., 2017. Probiotic bacteria alter pattern-recognition receptor expression and cytokine profile in a human macrophage model challenged with Candida albicans and lipopolysaccharide. Frontiers in Microbiology, vol. 8, pp. 2280. http://doi.org/10.3389/fmicb.2017.02280. PMid:29238325.
http://doi.org/10.3389/fmicb.2017.02280...
). In addition, in the cultivation of Candida with L. rhamnosus, a reduction in the production of proteinase, hemolysis, hyphae and biofilms was observed (Oliveira et al., 2016OLIVEIRA, V.M.C., SANTOS, S.S.F., SILVA, C.R.G., JORGE, A.O.C. and LEÃO, M.V.P., 2016. Lactobacillus is able to alter the virulence and the sensitivity profile of Candida albicans. Journal of Applied Microbiology, vol. 121, no. 6, pp. 1737-1744. http://doi.org/10.1111/jam.13289. PMid:27606962.
http://doi.org/10.1111/jam.13289...
).

Therefore, it is believed that advances in the use of probiotics in the prevention and treatment of oral candidiasis are an attractive alternative to restoring the microbiota between the bacterial and fungal communities in the oral cavity (Doppalapudi et al., 2020DOPPALAPUDI, R., VUNDAVALLI, S. and PRABHAT, M.P., 2020. Effect of probiotic bacteria on oral Candida in head-and neck-radiotherapy patients: A randomized clinical trial. Journal of Cancer Research and Therapeutics, vol. 16, no. 3, pp. 470-477. http://doi.org/10.4103/jcrt.JCRT_334_18. PMid:32719253.
http://doi.org/10.4103/jcrt.JCRT_334_18...
). Thus, our review aims to highlight the mechanisms of action of Lactobacillus spp. and methods used in vitro and in vivo that can be used in the treatment of oral candidiasis.

2. Material and Methods

This is a narrative bibliographic review carried out through the following databases: PubMed Central (PMC) and Scielo (Scientific Electronic Library Online) with the keywords used: Oral Candidiasis AND Lactobacillus. Original articles were included, which had in vitro and in vivo analyses focused on oral candidiasis, in English, published between 2012 and 2022. Articles that did not meet the inclusion criteria were excluded.

During the review, 11 articles focused on oral candidiasis were selected, with analyses performed in vitro and in vivo. However, before discussing the effects of Lactobacillus directly on oral candidiasis, we chose to mention the mechanisms of action of Lactobacillus spp. against Candida spp.

2.1. Mechanisms of action of Lactobacillus spp. against Candida spp.

Recently, a new classification was adopted in the list of prokaryotes with Standing in Nomenclature (LPSN). In this update, Lactobacillus spp. became part of the genus Lactiplantibacillus, which includes Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus. Lactobacillus casei, considered to be of the genus Lacticaseibacillus, includes Lactobacillus paracasei, and Lactobacillus rhamnosus. The group of Lactobacillus reuteri was called Limosilactobacillus, with the species Lactobacillus reuteri and Lactobacillus vaginalis. Lactobacillus delbrueckii remained in the genus Lactobacillus with the species Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus johnsonii, and the subspecies Lactobacillus delbrueckii, such as Lactobacillus delbrueckii ssp. bulgaricus and L. delbrueckii ssp. (Zheng et al., 2020ZHENG, J., WITTOUCK, S., SALVETTI, E., FRANZ, C.M.A.P., HARRIS, H.M.B., MATTARELLI, P., O’TOOLE, P.W., POT, B., VANDAMME, P., WALTER, J., WATANABE, K., WUYTS, S., FELIS, G.E., GÄNZLE, M.G. and LEBEER, S., 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, vol. 70, no. 4, pp. 2782-2858. http://doi.org/10.1099/ijsem.0.004107. PMid:32293557.
http://doi.org/10.1099/ijsem.0.004107...
; ICSP, 2022INTERNATIONAL COMMITTEE ON SYSTEMATICS OF PROKARYOTES – ICSP, 2022 [viewed 21 June 2022]. List of Prokaryotic Names with Position in Nomenclature (LPSN): genus: Lactobacillus [online]. Available from: https://lpsn.dsmz.de/genus/lactobacillus
https://lpsn.dsmz.de/genus/lactobacillus...
).

Bacterial and fungal species can occupy the same places on the mucous membranes. However, Lactobacillus may present activities against Candida, preventing fungal infections (Vazquez-Munoz et al., 2022VAZQUEZ-MUNOZ, R., THOMPSON, A., RUSSELL, J.T., SOBUE, T., ZHOU, Y. and DONGARI-BAGTZOGLOU, A., 2022. Insights from the Lactobacillus johnsonii genome suggest the production of metabolites with antibiofilm activity against the pathobiont Candida albicans. Frontiers in Microbiology, vol. 13, pp. 853762. http://doi.org/10.3389/fmicb.2022.853762. PMid:35330775.
http://doi.org/10.3389/fmicb.2022.853762...
). Lactobacillus spp. are facultative anaerobic, Gram-positive, and catalase-negative microorganisms that can form spores. Their peculiar characteristic is lactic acid production as a product of anaerobic fermentation (Zangl et al., 2020ZANGL, I., PAP, I.J., ASPÖCK, C. and SCHÜLLER, C., 2020. The role of Lactobacillus species in the control of Candida via biotrophic interactions. Microbial Cell, vol. 7, no. 1, pp. 1-14. http://doi.org/10.15698/mic2020.01.702. PMid:31921929.
http://doi.org/10.15698/mic2020.01.702...
). This acid is commonly reported as a metabolite that inhibits the growth of C. albicans (Ballou et al., 2016BALLOU, E.R., AVELAR, G.M., CHILDERS, D.S., MACKIE, J., BAIN, J.M., WAGENER, J., KASTORA, S.L., PANEA, M.D., HARDISON, S.E., WALKER, L.A., ERWIG, L.P., MUNRO, C.A., GOW, N.A., BROWN, G.D., MACCALLUM, D.M. and BROWN, A.J., 2016. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nature Microbiology, vol. 2, no. 2, pp. 16238. http://doi.org/10.1038/nmicrobiol.2016.238. PMid:27941860.
http://doi.org/10.1038/nmicrobiol.2016.2...
). In addition, they present several mechanisms of action, whether in competition for receptors, secretion of metabolic products, or stimulation of the innate and adaptive immune response (Mundula et al., 2019MUNDULA, T., RICCI, F., BARBETTA, B., BACCINI, M. and AMEDEI, A., 2019. Effect of probiotics on oral candidiasis: a systematic review and meta-analysis. Nutrients, vol. 11, no. 10, pp. 2449. http://doi.org/10.3390/nu11102449. PMid:31615039.
http://doi.org/10.3390/nu11102449...
).

Probiotics as adjuvants in therapies are conducive to preventing and reducing symptoms, keeping the microbiota in balance, and improving the immune system, mainly due to their mechanisms that act by helping in mucosal barriers, being antagonistic to pathogens, inhibiting adhesion and invasion of microorganisms, stimulating the immune system, and even the regulation of the central nervous system (Stavropoulou and Bezirtzoglou, 2020STAVROPOULOU, E. and BEZIRTZOGLOU, E., 2020. Probiotics in medicine: a long debate. Frontiers in Immunology, vol. 11, pp. 2192. http://doi.org/10.3389/fimmu.2020.02192. PMid:33072084.
http://doi.org/10.3389/fimmu.2020.02192...
).

A recent study demonstrated several antifungal activities of Lactobacillus, in which this genus restricts the progression of chronic periodontitis by inhibiting the secretion of Th17 lymphocytes, which are responsible for the increased production of cytokines that cause an inflammatory process by altering periodontal tissues (Kaźmierczyk-Winciorek et al., 2021KAŹMIERCZYK-WINCIOREK, M., NĘDZI-GÓRA, M. and SŁOTWIŃSKA, S.M., 2021. The immunomodulating role of probiotics in the prevention and treatment of oral diseases. Central European Journal of Immunology, vol. 46, no. 1, pp. 99-104. http://doi.org/10.5114/ceji.2021.104412. PMid:33897290.
http://doi.org/10.5114/ceji.2021.104412...
).

De Gregorio et al. (2020)DE GREGORIO, P.R., PAROLIN, C., ABRUZZO, A., LUPPI, B., PROTTI, M., MERCOLINI, L., SILVA, J.A., GIORDANI, B., MARANGONI, A., NADER-MACÍAS, M.E.F. and VITALI, B., 2020. Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion. Microbial Cell Factories, vol. 19, no. 1, pp. 133. http://doi.org/10.1186/s12934-020-01390-5. PMid:32552788.
http://doi.org/10.1186/s12934-020-01390-...
showed that L. crispatus BC1 biosurfactants could induce changes in cell morphology, contributing to the inhibition of Candida adhesion to epithelial cells. Thus, the specific action of probiotics against Candida spp. is related to decreased fungal adhesion through coaggregation, biofilm formation, competition for nutrients, and the production of organic acids and antimicrobial substances, such as bacteriocins, acetic acid, biosurfactants, hydrocarbons and hydrogen peroxide (Matsubara et al., 2016MATSUBARA, V.H., BANDARA, H.M.H.N., MAYER, M.P. and SAMARANAYAKE, L.P., 2016. Probiotics as antifungals in mucosal candidiasis. Clinical Infectious Diseases, vol. 62, no. 9, pp. 1143-1153. http://doi.org/10.1093/cid/ciw038. PMid:26826375.
http://doi.org/10.1093/cid/ciw038...
; Parolin et al., 2021PAROLIN, C., CROATTI, V., LAGHI, L., GIORDANI, B., TONDI, M.R., DE GREGORIO, P.R., FOSCHI, C. and VITALI, B., 2021. Lactobacillus biofilms influence anti-Candida activity. Frontiers in Microbiology, vol. 12, pp. 750368. http://doi.org/10.3389/fmicb.2021.750368. PMid:34777300.
http://doi.org/10.3389/fmicb.2021.750368...
; Borges et al., 2014BORGES, S., SILVA, J. and TEIXEIRA, P., 2014. The role of lactobacilli and probiotics in maintaining vaginal health. Archives of Gynecology and Obstetrics, vol. 289, no. 3, pp. 479-489. http://doi.org/10.1007/s00404-013-3064-9. PMid:24170161.
http://doi.org/10.1007/s00404-013-3064-9...
; Kovachev, 2018KOVACHEV, S., 2018. Defence factors of vaginal lactobacilli. Critical Reviews in Microbiology, vol. 44, no. 1, pp. 31-39. http://doi.org/10.1080/1040841X.2017.1306688. PMid:28418713.
http://doi.org/10.1080/1040841X.2017.130...
).

2.2. In vitro assays using Lactobacillus spp. against Candida spp. in studies focused on oral candidiasis

Table 1 lists different in vitro tests demonstrating Lactobacillus's performance against Candida spp. The species used were L. acidophilus, L. plantarum, L. paracasei, L. rhamnosus, Lactobacillus fermentum, L. reuteri, L. gasseri, Lactobacillus helveticus, L. casei. We observed that L. rhamnosus was the most commonly used in experiments against Candida. It is worth mentioning that this species is highly genetically characterized (Segers and Lebeer, 2014SEGERS, M.E. and LEBEER, S., 2014. Towards a better understanding of Lactobacillus rhamnosus GG-host interactions. Microbial Cell Factories, vol. 13, no. 1, suppl. 1, pp. S7. http://doi.org/10.1186/1475-2859-13-S1-S7. PMid:25186587.
http://doi.org/10.1186/1475-2859-13-S1-S...
).

Table 1
In vitro assays using Lactobacillus spp. against Candida spp. in studies focused on oral candidiasis.

Several studies report the antifungal potential of L. rhamnosus, mainly through the reduction of biofilm, filament and adhesion of C. albicans (Allonsius et al., 2017ALLONSIUS, C.N., VAN DEN BROEK, M.F.L., DE BOECK, I., KIEKENS, S., OERLEMANS, E.F.M., KIEKENS, F., FOUBERT, K., VANDENHEUVEL, D., COS, P., DELPUTTE, P. and LEBEER, S., 2017. Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysaccharides. Microbial Biotechnology, vol. 10, no. 6, pp. 1753-1763. http://doi.org/10.1111/1751-7915.12799. PMid:28772020.
http://doi.org/10.1111/1751-7915.12799...
, 2019ALLONSIUS, C.N., VANDENHEUVEL, D., OERLEMANS, E.F.M., PETROVA, M.I., DONDERS, G.G.G., COS, P., DELPUTTE, P. and LEBEER, S., 2019. Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Scientific Reports, vol. 9, no. 1, pp. 2900. http://doi.org/10.1038/s41598-019-39625-0. PMid:30814593.
http://doi.org/10.1038/s41598-019-39625-...
; Stivala et al., 2021STIVALA, A., CAROTA, G., FUOCHI, V. and FURNERI, P.M., 2021. Lactobacillus rhamnosus AD3 as a promising alternative for probiotic products. Biomolecules, vol. 11, no. 1, pp. 94. http://doi.org/10.3390/biom11010094. PMid:33450875.
http://doi.org/10.3390/biom11010094...
; Ribeiro et al., 2017RIBEIRO, F.C., IGLESIAS, M.C., BARROS, P.P.D., SANTOS, S.S.F., JORGE, A.O.C. and LEÃO, M.P.V., 2017. Lactobacillus rhamnosus interferes with Candida albicans adherence and biofilm formation: a potential alternative treatment of candidiasis. Austin Journal of Pharmacology and Therapeutics, vol. 9, no. 2, pp. 1133. http://doi.org/10.1111/jam.13324.
http://doi.org/10.1111/jam.13324...
; Ribeiro et al., 2020RIBEIRO, F.C., JUNQUEIRA, J.C., DOS SANTOS, J.D., DE BARROS, P.P., ROSSONI, R.D., SHUKLA, S., FUCHS, B.B., SHUKLA, A. and MYLONAKIS, E., 2020. Development of probiotic formulations for oral candidiasis prevention: gellan gum as a carrier to deliver Lactobacillus paracasei 28.4. Antimicrobial Agents and Chemotherapy, vol. 64, no. 6, e02323-19. http://doi.org/10.1128/AAC.02323-19. PMid:32253208.
http://doi.org/10.1128/AAC.02323-19...
). Song and Lee (2017)SONG, Y.G. and LEE, S.H., 2017. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface. Archives of Oral Biology, vol. 76, pp. 1-6. http://doi.org/10.1016/j.archoralbio.2016.12.014. PMid:28063305.
http://doi.org/10.1016/j.archoralbio.201...
, when testing the action of the probiotics L. rhamnosus GG (ATCC 53103) and L. casei (ATCC 334) on the production of biofilm and hyphae in the resin prosthesis, found that the probiotic association reduced the production of blastoconidia and hyphae of C. albicans without modifying the prosthesis structure. It is known that the transition in yeast-hyphae morphology is paramount for the pathogenicity of Candida species (Witchley et al., 2019WITCHLEY, J.N., PENUMETCHA, P., ABON, N.V., WOOLFORD, C.A., MITCHELL, A.P. and NOBLE, S.M., 2019. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host & Microbe, vol. 25, no. 3, pp. 432-443.e6. http://doi.org/10.1016/j.chom.2019.02.008. PMid:30870623.
http://doi.org/10.1016/j.chom.2019.02.00...
).

According to Mailander-Sánchez et al. (2017)MAILÄNDER-SÁNCHEZ, D., BRAUNSDORF, C., GRUMAZ, C., MÜLLER, C., LORENZ, S., STEVENS, P., WAGENER, J., HEBECKER, B., HUBE, B., BRACHER, F., SOHN, K. and SCHALLER, M., 2017. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion. PLoS One, vol. 12, no. 10, e0184438. http://doi.org/10.1371/journal.pone.0184438. PMid:29023454.
http://doi.org/10.1371/journal.pone.0184...
, the antifungal property of L. rhamnosus GG is mediated by adhesion blocking and nutrient depletion mechanisms. Using oral epithelial cells (Reconstructed Human Oral Epithelium - RHOE), the authors observed that C. albicans in contact with RHOEs stimulates the production of lactate dehydrogenase (LDH) and lysis of epithelial cells. However, when the cells were pre-incubated with the probiotic, there was a reduction in C. albicans and also in the release of LDH, with attenuation of evasion mechanisms and hyphae production.

Lactobacillus spp. modulate the proliferation of pathogens through the production of antimicrobial metabolic by-products, such as biosurfactants (BSs) and bacteriocins (Zheng et al., 2020ZHENG, J., WITTOUCK, S., SALVETTI, E., FRANZ, C.M.A.P., HARRIS, H.M.B., MATTARELLI, P., O’TOOLE, P.W., POT, B., VANDAMME, P., WALTER, J., WATANABE, K., WUYTS, S., FELIS, G.E., GÄNZLE, M.G. and LEBEER, S., 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, vol. 70, no. 4, pp. 2782-2858. http://doi.org/10.1099/ijsem.0.004107. PMid:32293557.
http://doi.org/10.1099/ijsem.0.004107...
; Borges et al., 2014BORGES, S., SILVA, J. and TEIXEIRA, P., 2014. The role of lactobacilli and probiotics in maintaining vaginal health. Archives of Gynecology and Obstetrics, vol. 289, no. 3, pp. 479-489. http://doi.org/10.1007/s00404-013-3064-9. PMid:24170161.
http://doi.org/10.1007/s00404-013-3064-9...
). BSs produced by Lactobacillus are reported to have potential effects on Candida adhesion and biofilm formation. An in vitro model of adhesion and biofilm formation using pre-incubation of Lactobacillus species in BSs-sensitized microplates showed that these interfered with C. albicans biofilm formation (Itapary et al., 2019ITAPARY, C.S., RAMOS, F.Y., DUARTE, C.L.C., BOMFIM, M.R.Q., OLIVEIRA, B.M., HOLANDA, R.A., SANTOS, V.L., GOMES, M.S., BUOZZI, M.E., SOUZA, M.A., ANDRADE, M.C. and MONTEIRO-NETO, V., 2019. Antifungal and antivirulence activity of vaginal Lactobacillus spp. products against Candida vaginal isolates. Pathogens, vol. 8, no. 3, pp. 150. http://doi.org/10.3390/pathogens8030150. PMid:31547398.
http://doi.org/10.3390/pathogens8030150...
).

Ribeiro et al. (2017)RIBEIRO, F.C., IGLESIAS, M.C., BARROS, P.P.D., SANTOS, S.S.F., JORGE, A.O.C. and LEÃO, M.P.V., 2017. Lactobacillus rhamnosus interferes with Candida albicans adherence and biofilm formation: a potential alternative treatment of candidiasis. Austin Journal of Pharmacology and Therapeutics, vol. 9, no. 2, pp. 1133. http://doi.org/10.1111/jam.13324.
http://doi.org/10.1111/jam.13324...
reported that L. rhamnosus down-regulates genes related to filament and adhesion (als3 and hwp1) and transcription (bcr1 and cph1) of C. albicans. When Lactobacillus supernatant was used, Candida metabolism was reduced by about 61%. The same occurred with L. rhamnosus supernatant, which reduced fungal biomass and metabolic activity of single and mixed cultures of Candida. On C. tropicalis, the reduction was 66.84%. For C. krusei, 70.56%, and C. parapsilosis, 41.33%. In mixed cultures of these Candida species on silicone, there was a decrease of 67.16% by L. rhamnosus (Tan et al., 2018TAN, Y., LEONHARD, M., MOSER, D., MA, S. and SCHNEIDER-STICKLER, B., 2018. Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Archives of Oral Biology, vol. 85, pp. 40-45. http://doi.org/10.1016/j.archoralbio.2017.10.002. PMid:29031236.
http://doi.org/10.1016/j.archoralbio.201...
).

Rossoni et al. (2018)ROSSONI, R.D., BARROS, P.P., DE ALVARENGA, J.A., RIBEIRO, F.C., VELLOSO, M.D.S., FUCHS, B.B., MYLONAKIS, E., JORGE, A.O.C. and JUNQUEIRA, J.C., 2018. Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis. Biofouling, vol. 34, no. 2, pp. 212-225. http://doi.org/10.1080/08927014.2018.1425402. PMid:29380647.
http://doi.org/10.1080/08927014.2018.142...
also evaluated the effect of L. rhamnosus, L. fermentum, and L. paracasei supernatants against C. albicans. The strains L. paracasei 30.1, 37.1, and 39.2 and L. rhamnosus 36.4 had no inhibitory effects on C. albicans ATCC 18804. On the other hand, it is essential to highlight that not all Lactobacillus spp. are beneficial and protective (Kalia et al., 2020KALIA, N., SINGH, J. and KAUR, M., 2020. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Annals of Clinical Microbiology and Antimicrobials, vol. 19, no. 1, pp. 5. http://doi.org/10.1186/s12941-020-0347-4. PMid:31992328.
http://doi.org/10.1186/s12941-020-0347-4...
). The isolates that showed the highest antifungal activity against C. albicans ATCC 18804 were L. rhamnosus 5.2, L. fermentum 20.4, and L. paracasei 28.4. Although the three strains reduced the expression of the als3, hwp1, cph1 and efg1 genes of C. albicans, L. paracasei showed a better reduction of C. albicans cells and gene expression (Rossoni et al., 2017ROSSONI, R.D., FUCHS, B.B., DE BARROS, P.P., VELLOSO, M.D., JORGE, A.O., JUNQUEIRA, J.C. and MYLONAKIS, E., 2017. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection. PLoS One, vol. 12, no. 3, e0173332. http://doi.org/10.1371/journal.pone.0173332. PMid:28267809.
http://doi.org/10.1371/journal.pone.0173...
).

Recently, it was found that L. paracasei 28.4 also interferes with the growth of C. auris (Rossoni et al., 2020ROSSONI, R.D., BARROS, P.P., MENDONÇA, I.D.C., MEDINA, R.P., SILVA, D.H.S., FUCHS, B.B., JUNQUEIRA, J.C. and MYLONAKIS, E., 2020. The postbiotic activity of Lactobacillus paracasei 28.4 against Candida auris. Frontiers in Cellular and Infection Microbiology, vol. 10, pp. 397. http://doi.org/10.3389/fcimb.2020.00397. PMid:32850495.
http://doi.org/10.3389/fcimb.2020.00397...
), which is quite interesting, given that C. auris is an emerging multidrug-resistant pathogen that causes systemic infections (Jeffery-Smith et al., 2017JEFFERY-SMITH, A., TAORI, S.K., SCHELENZ, S., JEFFERY, K., JOHNSON, E.M., BORMAN, A., MANUEL, R. and BROWN, C.S., 2017. Candida auris: a review of the literature. Clinical Microbiology Reviews, vol. 31, no. 1, e00029-e17. http://doi.org/10.1128/CMR.00029. PMid:29142078.).

Ribeiro et al. (2020)RIBEIRO, F.C., JUNQUEIRA, J.C., DOS SANTOS, J.D., DE BARROS, P.P., ROSSONI, R.D., SHUKLA, S., FUCHS, B.B., SHUKLA, A. and MYLONAKIS, E., 2020. Development of probiotic formulations for oral candidiasis prevention: gellan gum as a carrier to deliver Lactobacillus paracasei 28.4. Antimicrobial Agents and Chemotherapy, vol. 64, no. 6, e02323-19. http://doi.org/10.1128/AAC.02323-19. PMid:32253208.
http://doi.org/10.1128/AAC.02323-19...
developed formulations with gellan gum containing L. paracasei 28.4 to improve the availability of the probiotic in the oral cavity. The tested formulations were able to inhibit Candida spp. biofilms, decreasing the total biomass and preventing the formation of hyphae.

A study on the genomic analysis of L. fermentum ATCC 23271 detected genes related to proteins with the ability to tolerate digestive enzymes, bile salts, acid pH, oxidative stress, and the production of lactic acid and host cell adhesion molecules (Santos et al., 2021SANTOS, C.I., CAMPOS, C.D.L., NUNES-NETO, W.R., CARMO, M.S., NOGUEIRA, F.A.B., FERREIRA, R.M., COSTA, E.P.S., GONZAGA, L.F., ARAÚJO, J.M.M., MONTEIRO, J.M., MONTEIRO, C.R.A.V., PLATNER, F.S., FIGUEIREDO, I.F.S., HOLANDA, R.A., MONTEIRO, S.G., FERNANDES, E.S., MONTEIRO, A.S. and MONTEIRO-NETO, V., 2021. Genomic analysis of Limosilactobacillus fermentum ATCC 23271, a potential probiotic strain with anti-Candida activity. Journal of Fungi, vol. 7, no. 10, pp. 794. http://doi.org/10.3390/jof7100794. PMid:34682216.
http://doi.org/10.3390/jof7100794...
). In addition, Carmo et al. (2016)CARMO, M.S., NORONHA, F.M., ARRUDA, M.O., COSTA, Ê.P., BOMFIM, M.R., MONTEIRO, A.S., FERRO, T.A., FERNANDES, E.S., GIRÓN, J.A. and MONTEIRO-NETO, V., 2016. Lactobacillus fermentum ATCC 23271 displays in vitro inhibitory activities against Candida spp. Frontiers in Microbiology, vol. 7, pp. 1722. http://doi.org/10.3389/fmicb.2016.01722. PMid:27833605.
http://doi.org/10.3389/fmicb.2016.01722...
observed that L. fermentum ATCC 23271 produces biofilm, co-aggregates and binds to mucin, interacting effectively against C. albicans.

L. acidophilus can co-aggregate with Candida species, with a high rate of coaggregation with C. krusei and C. glabrata being reported. Supernatants from L. acidophilus and L. plantarum have an inhibitory effect on the growth of C. krusei, C. parapsilosis and C. kefyr compared to the antifungal Fluconazole (Salari and Almani, 2020SALARI, S. and ALMANI, P.G.N., 2020. Antifungal effects of Lactobacillus acidophilus and Lactobacillus plantarum against different oral Candida species isolated from HIV/AIDS patients: an in vitro study. Journal of Oral Microbiology, vol. 12, no. 1, pp. 1769386. http://doi.org/10.1080/20002297.2020.1769386. PMid:32922676.
http://doi.org/10.1080/20002297.2020.176...
).

Supernatants from L. acidophilus 8MR7 and L. paracasei subspecies paracasei 10MR8 have been shown to inhibit Candida spp. biofilms (Kivanç and Er, 2020KIVANÇ, M. and ER, S., 2020. Biofilm formation of Candida Spp. isolated from the vagina and antibiofilm activities of lactic acid bacteria on the these Candida Isolates. African Health Sciences, vol. 20, no. 2, pp. 641-648. http://doi.org/10.4314/ahs.v20i2.12. PMid:33163025.
http://doi.org/10.4314/ahs.v20i2.12...
). L. acidophilus reduces the growth of C. albicans and decreases the production of hyphae (Vilela et al., 2015VILELA, S.F., BARBOSA, J.O., ROSSONI, R.D., SANTOS, J.D., PRATA, M.C., ANBINDER, A.L., JORGE, A.O. and JUNQUEIRA, J.C., 2015. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence, vol. 6, no. 1, pp. 29-39. http://doi.org/10.4161/21505594.2014.981486. PMid:25654408.
http://doi.org/10.4161/21505594.2014.981...
).

The supernatant of L. plantarum SD5870 and L. helveticus CBS N116411N considerably reduced the C. albican's adhesion to polyurethane. When the probiotic cells were combined, there was a greater capacity to destroy pre-formed biofilms and decrease the expression of als3, efg1, hwp1 and sap5 genes, related to adhesion, invasion and defenses of C. albicans (James et al., 2016JAMES, K.M., MACDONALD, K.W., CHANYI, R.M., CADIEUX, P.A. and BURTON, J.P., 2016. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. Journal of Medical Microbiology, vol. 65, no. 4, pp. 328-336. http://doi.org/10.1099/jmm.0.000226. PMid:26847045.
http://doi.org/10.1099/jmm.0.000226...
).

Studies by Zeng et al. (2022)ZENG, Y., FADAAK, A., ALOMEIR, N., WU, T.T., RUSTCHENKO, E., QING, S., BAO, J., GILBERT, C. and XIAO, J., 2022. Lactobacillus plantarum disrupts S. mutans–C. albicans cross-kingdom biofilms. Frontiers in Cellular and Infection Microbiology, vol. 12, pp. 872012. http://doi.org/10.3389/fcimb.2022.872012. PMid:35392605.
http://doi.org/10.3389/fcimb.2022.872012...
corroborate the data presented, since L. plantarum 14917 inhibited the growth of C. albicans under planktonic conditions, as well as the formation of biofilm. L. plantarum strains 8014 and 14917 eliminated cariogenic biofilm formation. When the supernatant of L. plantarum 14917 was tested, there was antibacterial and antifungal activity against C. albicans, but the supernatant of L. plantarum 8014 had bacteriostatic and fungistatic effects.

Parolin et al. (2021)PAROLIN, C., CROATTI, V., LAGHI, L., GIORDANI, B., TONDI, M.R., DE GREGORIO, P.R., FOSCHI, C. and VITALI, B., 2021. Lactobacillus biofilms influence anti-Candida activity. Frontiers in Microbiology, vol. 12, pp. 750368. http://doi.org/10.3389/fmicb.2021.750368. PMid:34777300.
http://doi.org/10.3389/fmicb.2021.750368...
found that L. plantarum was a strong biofilm producer, as was L. gasseri, and provided broad activity against Candida when applied in planktonic media, particularly when exposed to C. lusitaniae SO22 and C. parapsilosis SO27. L. gasseri has also been mentioned as a biofilm inhibitor in mixed cultures of Candida species (Tan et al., 2018TAN, Y., LEONHARD, M., MOSER, D., MA, S. and SCHNEIDER-STICKLER, B., 2018. Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Archives of Oral Biology, vol. 85, pp. 40-45. http://doi.org/10.1016/j.archoralbio.2017.10.002. PMid:29031236.
http://doi.org/10.1016/j.archoralbio.201...
).

Jorgensen et al. (2017)JØRGENSEN, M.R., KRAGELUND, C., JENSEN, P.Ø., KELLER, M.K. and TWETMAN, S., 2017. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro. Journal of Oral Microbiology, vol. 9, no. 1, pp. 1274582. http://doi.org/10.1080/20002297.2016.1274582. PMid:28326154.
http://doi.org/10.1080/20002297.2016.127...
analyzing the in vitro efficacy of L. reuteri DSM 17938 and ATCC PTA 5289 against clinical isolates of C. albicans CBS 562 NT, C. dubliniensis 41_3 ZZMK, C. glabrata CBS 863, C. krusei (Issatchenkia orientalis) RV 491, C. parapsilosis 26 PBS and C. tropicalis DSM 7524, and reference isolates of C. albicans CCUG 46390, C. dubliniensis CCUG 48722, C. glabrata CCUG 63819, C. krusei CCUG 56126, C. parapsilosis CCUG 56136 and C. tropicalis CCUG 47037, found that L. reuteri (DSM 17938) exhibited greater coaggregation with C. krusei and had inhibition of Candida strains, except for the two strains of C. krusei. A lower inhibition of C. tropicalis by L. reuteri (DSM 17938) was observed at a concentration of 109 CFU/mL, while C. glabrata was inhibited at the highest concentration.

2.3. In vivo assays using Lactobacillus spp. against Candida spp. in studies focused on oral candidiasis

Most models use immunosuppressed mice for infection by Candida spp. (Table 2). Ito et al. (2021)ITO, R., MINE, Y., YUMISASHI, Y., YOSHIOKA, R., HAMAOKA, M., TAJI, T., MURAYAMA, T. and NIKAWA, H., 2021. In vivo efficacy of Lacticaseibacillus rhamnosus L8020 in a mouse model of oral candidiasis. Journal of Fungi, vol. 7, no. 5, pp. 322. http://doi.org/10.3390/jof7050322. PMid:33919079.
http://doi.org/10.3390/jof7050322...
used mice infected with C. albicans GDH18 to treat L. rhamnosus L8020. The probiotic was effective as the treated group had smaller lesions on their tongues when compared to the control group, administered only in water. The probiotic reduced the expression of Dectin-2 and CCL2 and decreased TLR2 and CXCL1/KC levels.

Table 2
In vivo tests using Lactobacillus spp. against Candida spp. in studies focused on Oral Candidiasis.

On the other hand, Leão et al. (2018)LEÃO, M.V.P., TAVARES, T.A.A., GONÇALVES, C.R.S., SANTOS, S.S.F., JUNQUEIRA, J.C., DE OLIVEIRA, L.D. and JORGE, A.O.C., 2018. Lactobacillus rhamnosus intake can prevent the development of Candidiasis. Clinical Oral Investigations, vol. 22, no. 7, pp. 2511-2518. http://doi.org/10.1007/s00784-018-2347-8. PMid:29372447.
http://doi.org/10.1007/s00784-018-2347-8...
used L. rhamnosus ATCC 7469 in their oral candidiasis model by infecting Wistar rats with C. albicans. In the study, probiotics were administered for seven and 21 days to different groups of animals. Ingestion of L. rhamnosus ATCC 7469 for seven days did not significantly influence the CFU count. Meanwhile, C. albicans was not detected in most infected animals that received the probiotic for 21 days.

In the study by Ribeiro et al. (2020)RIBEIRO, F.C., JUNQUEIRA, J.C., DOS SANTOS, J.D., DE BARROS, P.P., ROSSONI, R.D., SHUKLA, S., FUCHS, B.B., SHUKLA, A. and MYLONAKIS, E., 2020. Development of probiotic formulations for oral candidiasis prevention: gellan gum as a carrier to deliver Lactobacillus paracasei 28.4. Antimicrobial Agents and Chemotherapy, vol. 64, no. 6, e02323-19. http://doi.org/10.1128/AAC.02323-19. PMid:32253208.
http://doi.org/10.1128/AAC.02323-19...
when administering L. paracasei 28.4 in Swiss mice in a 1% probiotic formulation, observed an inhibition of the growth of C. albicans when compared to the control group, preventing the appearance of lesions caused by the candidiasis and inflammation.

Matsubara et al. (2012)MATSUBARA, V.H., SILVA, E.G., PAULA, C.R., ISHIKAWA, K.H. and NAKAMAE, A.E.M., 2012. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Diseases, vol. 18, no. 3, pp. 260-264. http://doi.org/10.1111/j.1601-0825.2011.01868.x. PMid:22059932.
http://doi.org/10.1111/j.1601-0825.2011....
used a model of oral candidiasis in DBA/2 mice. It was found that L. acidophilus and L. rhamnosus inhibited yeasts in the oral mucosa. Compared with the control group containing nystatin, it was observed that the drug did not cause a significant reduction in C. albicans, as observed with the group where lactobacilli were administered. Once again, the study points to the importance of new therapeutic methods aimed at oral candidiasis.

Several species of Lactobacillus have probiotic activities that promote intestinal, vaginal and oral health (Mahasneh and Mahasneh, 2017MAHASNEH, S.A. and MAHASNEH, A.M., 2017. Probiotics: a promising role in dental health. Dentistry Journal, vol. 5, no. 4, pp. 26. http://doi.org/10.3390/dj5040026. PMid:29563432.
http://doi.org/10.3390/dj5040026...
; Vicariotto et al., 2014VICARIOTTO, F., MOGNA, L. and DEL PIANO, M., 2014. Effectiveness of the two microorganisms Lactobacillus fermentum LF15 and Lactobacillus plantarum LP01, formulated in slow-release vaginal tablets, in women affected by bacterial vaginosis: a pilot study. Journal of Clinical Gastroenterology, vol. 48, no. 1, suppl. 1, pp. S106-S112. http://doi.org/10.1097/MCG.0000000000000226. PMid:25291116.
http://doi.org/10.1097/MCG.0000000000000...
). However, when focused on oral health, there are few reports in the literature, even though there is evidence that Lactobacillus can decrease the growth of Candida in the human oral cavity (Ishikawa et al., 2015ISHIKAWA, K.H., MAYER, M.P., MIYAZIMA, T.Y., MATSUBARA, V.H., SILVA, E.G., PAULA, C.R., CAMPOS, T.T. and NAKAMAE, A.E., 2015. A multispecies probiotic reduces oral Candida colonization in denture wearers. Journal of Prosthodontics, vol. 24, no. 3, pp. 194-199. http://doi.org/10.1111/jopr.12198. PMid:25143068.
http://doi.org/10.1111/jopr.12198...
).

The development of probiotic formulations that maintain the viability of the microorganisms and are effective for the consumer is another challenge related to the lack of studies (Fenster et al., 2019FENSTER, K., FREEBURG, B., HOLLARD, C., WONG, C., RØNHAVE LAURSEN, R. and OUWEHAND, A.C., 2019. The production and delivery of probiotics: a review of a practical approach. Microorganisms, vol. 7, no. 3, pp. 83. http://doi.org/10.3390/microorganisms7030083. PMid:30884906.
http://doi.org/10.3390/microorganisms703...
). For Chugh and Kamal-Eldin (2020), aCHUGH, B. and KAMAL-ELDIN, A., 2020. Bioactive compounds produced by probiotics in food products. Current Opinion in Food Science, vol. 32, pp. 76-82. http://doi.org/10.1016/j.cofs.2020.02.003.
http://doi.org/10.1016/j.cofs.2020.02.00...
probiotic formulation to be considered therapeutic should be in the range of 108 to 109 CFU/g, so that bioavailability, when ingested, is in the range of 106 to 107 CFU/g. It is noticeable that cell viability is necessary and that several mechanisms help maintain the viability of probiotic formulations. Cell inactivation mechanisms are one of the prerequisites (Coutinho et al., 2010COUTINHO, D.F., SANT, S.V., SHIN, H., OLIVEIRA, J.T., GOMES, M.E., NEVES, N.M., KHADEMHOSSEINI, A. and REIS, R.L., 2010. Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials, vol. 31, no. 29, pp. 7494-7502. http://doi.org/10.1016/j.biomaterials.2010.06.035. PMid:20663552.
http://doi.org/10.1016/j.biomaterials.20...
).

Gelatin is widely used as a delivery method for probiotics. Gellan gum is a natural polysaccharide commonly used as a food additive and can potentially be manipulated by the pharmaceutical industry to encapsulate Lactobacillus (Coutinho et al., 2010COUTINHO, D.F., SANT, S.V., SHIN, H., OLIVEIRA, J.T., GOMES, M.E., NEVES, N.M., KHADEMHOSSEINI, A. and REIS, R.L., 2010. Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials, vol. 31, no. 29, pp. 7494-7502. http://doi.org/10.1016/j.biomaterials.2010.06.035. PMid:20663552.
http://doi.org/10.1016/j.biomaterials.20...
; Ribeiro et al., 2020RIBEIRO, F.C., JUNQUEIRA, J.C., DOS SANTOS, J.D., DE BARROS, P.P., ROSSONI, R.D., SHUKLA, S., FUCHS, B.B., SHUKLA, A. and MYLONAKIS, E., 2020. Development of probiotic formulations for oral candidiasis prevention: gellan gum as a carrier to deliver Lactobacillus paracasei 28.4. Antimicrobial Agents and Chemotherapy, vol. 64, no. 6, e02323-19. http://doi.org/10.1128/AAC.02323-19. PMid:32253208.
http://doi.org/10.1128/AAC.02323-19...
). However, since the viability of microorganisms is maintained for a short time during their storage, another way to maintain cell viability is to reduce the amount of water available through freezing procedures to allow drying and prolongation of cell viability (Broeckx et al., 2017BROECKX, G., VANDENHEUVEL, D., HENKENS, T., KIEKENS, S., VAN DEN BROEK, M.F., LEBEER, S. and KIEKENS, F., 2017. Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage. International Journal of Pharmaceutics, vol. 534, no. 1-2, pp. 35-41. http://doi.org/10.1016/j.ijpharm.2017.09.075. PMid:28986319.
http://doi.org/10.1016/j.ijpharm.2017.09...
; Govender et al., 2014GOVENDER, M., CHOONARA, Y.E., KUMAR, P., DU TOIT, L.C., VAN VUUREN, S. and PILLAY, V., 2014. A review of the advancements in probiotic delivery: conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, vol. 15, no. 1, pp. 29-43. http://doi.org/10.1208/s12249-013-0027-1. PMid:24222267.
http://doi.org/10.1208/s12249-013-0027-1...
). On the other hand, there are complications with liquid formulations since patients do not accept these formulations well due to storage criteria for microbial viability (Vorländer et al., 2020VORLÄNDER, K., KAMPEN, I., FINKE, J.H. and KWADE, A., 2020. Along the process chain to probiotic tablets: evaluation of mechanical impacts on microbial viability. Pharmaceutics, vol. 12, no. 1, pp. 66. http://doi.org/10.3390/pharmaceutics12010066. PMid:31952192.
http://doi.org/10.3390/pharmaceutics1201...
).

Thus, we find that there is a demand to create new mechanisms that protect probiotics, thus improving their shelf life. The application of these microorganisms and their antimicrobial products must be well-validated to have space on the market and not have toxic effects. For this, studying the interactions between microorganisms and the host is crucial.

3. Conclusion

Different fungal genera, such as Candida, Pneumocystis and Cryptococcus, cause morbidity and mortality worldwide. In this context, fungal diseases are advancing, mainly due to their disregard by organ-competent bodies. Therefore, the description of the prevalence of oral candidiasis, its clinical manifestations, and its treatment is of great importance for preserving health, especially when resistance strains to conventional drugs are involved. Thus, it is necessary to search for new therapeutic alternatives for treating oral candidiasis and new probiotic strains and describe their mechanisms of action through in vitro and in vivo studies.

The search for new probiotic strains and mechanisms of action are of great importance. It is known that probiotics are part of the population's daily life and that their benefits are due to the recovery of homeostasis by reducing pathogens, regulating the immune system, and even preventing infections. Therefore, it is expected that new probiotic strains will be able to reduce Candida infection in the oral cavity, as well as the production of its virulence factors, in addition to controlling the inflammatory process resulting from the infection process.

Acknowledgements

The authors thank the Ceuma University, Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant number: 307035/2022-0), and Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (grant number: BEPP 01822/21) for technical and financial support.

References

  • ALLONSIUS, C.N., VAN DEN BROEK, M.F.L., DE BOECK, I., KIEKENS, S., OERLEMANS, E.F.M., KIEKENS, F., FOUBERT, K., VANDENHEUVEL, D., COS, P., DELPUTTE, P. and LEBEER, S., 2017. Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysaccharides. Microbial Biotechnology, vol. 10, no. 6, pp. 1753-1763. http://doi.org/10.1111/1751-7915.12799 PMid:28772020.
    » http://doi.org/10.1111/1751-7915.12799
  • ALLONSIUS, C.N., VANDENHEUVEL, D., OERLEMANS, E.F.M., PETROVA, M.I., DONDERS, G.G.G., COS, P., DELPUTTE, P. and LEBEER, S., 2019. Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Scientific Reports, vol. 9, no. 1, pp. 2900. http://doi.org/10.1038/s41598-019-39625-0 PMid:30814593.
    » http://doi.org/10.1038/s41598-019-39625-0
  • AMARA, A.A. and SHIBL, A., 2015. Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharmaceutical Journal, vol. 23, no. 2, pp. 107-114. http://doi.org/10.1016/j.jsps.2013.07.001 PMid:25972729.
    » http://doi.org/10.1016/j.jsps.2013.07.001
  • BALLOU, E.R., AVELAR, G.M., CHILDERS, D.S., MACKIE, J., BAIN, J.M., WAGENER, J., KASTORA, S.L., PANEA, M.D., HARDISON, S.E., WALKER, L.A., ERWIG, L.P., MUNRO, C.A., GOW, N.A., BROWN, G.D., MACCALLUM, D.M. and BROWN, A.J., 2016. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nature Microbiology, vol. 2, no. 2, pp. 16238. http://doi.org/10.1038/nmicrobiol.2016.238 PMid:27941860.
    » http://doi.org/10.1038/nmicrobiol.2016.238
  • BESSA, E.R.L., OLIVEIRA, L.D., MUNIZ, A.B., SILVA, G.D.G., FERNANDES, O.C.C. and HERKRATH, F.J., 2021. Epidemiology of oral candidiasis: a household-based population survey in a medium-sized city in Amazonas. Research. Social Development, vol. 10, no. 10, e127101018664. http://doi.org/10.33448/rsd-v10i10.18664
    » http://doi.org/10.33448/rsd-v10i10.18664
  • BHATTACHARYA, S., SAE-TIA, S. and FRIES, B.C., 2020. Candidiasis and mechanisms of antifungal resistance. Antibiotics, vol. 9, no. 6, pp. 312. http://doi.org/10.3390/antibiotics9060312 PMid:32526921.
    » http://doi.org/10.3390/antibiotics9060312
  • BONGOMIN, F., GAGO, S., OLADELE, R. and DENNING, D., 2017. Global and multi-national prevalence of fungal diseases-estimate precision. Journal of Fungi, vol. 3, no. 4, pp. 57. http://doi.org/10.3390/jof3040057 PMid:29371573.
    » http://doi.org/10.3390/jof3040057
  • BORGES, S., SILVA, J. and TEIXEIRA, P., 2014. The role of lactobacilli and probiotics in maintaining vaginal health. Archives of Gynecology and Obstetrics, vol. 289, no. 3, pp. 479-489. http://doi.org/10.1007/s00404-013-3064-9 PMid:24170161.
    » http://doi.org/10.1007/s00404-013-3064-9
  • BRASIL. Ministério da Saúde, 2021 [viewed 27 December 2021]. Systemic candidiasis [online]. Available from: http://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/c/candidiase-sistemica
    » http://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/c/candidiase-sistemica
  • BROECKX, G., VANDENHEUVEL, D., HENKENS, T., KIEKENS, S., VAN DEN BROEK, M.F., LEBEER, S. and KIEKENS, F., 2017. Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage. International Journal of Pharmaceutics, vol. 534, no. 1-2, pp. 35-41. http://doi.org/10.1016/j.ijpharm.2017.09.075 PMid:28986319.
    » http://doi.org/10.1016/j.ijpharm.2017.09.075
  • BROWN, G.D., DENNING, D.W., GOW, N.A., LEVITZ, S.M., NETEA, M.G. and WHITE, T.C., 2012. Hidden killers: human fungal infections. Science Translational Medicine, vol. 4, no. 165, pp. 165rv13. http://doi.org/10.1126/scitranslmed.3004404 PMid:23253612.
    » http://doi.org/10.1126/scitranslmed.3004404
  • CARMO, M.S., NORONHA, F.M., ARRUDA, M.O., COSTA, Ê.P., BOMFIM, M.R., MONTEIRO, A.S., FERRO, T.A., FERNANDES, E.S., GIRÓN, J.A. and MONTEIRO-NETO, V., 2016. Lactobacillus fermentum ATCC 23271 displays in vitro inhibitory activities against Candida spp. Frontiers in Microbiology, vol. 7, pp. 1722. http://doi.org/10.3389/fmicb.2016.01722 PMid:27833605.
    » http://doi.org/10.3389/fmicb.2016.01722
  • CENTERS FOR DISEASE CONTROL AND PREVENTION – CDC, 2019 [viewed 27 December 2021]. Antibiotic resistance threats in the United States [online]. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html
    » https://www.cdc.gov/drugresistance/biggest-threats.html
  • ČERNÁKOVÁ, L. and RODRIGUES, C.F., 2020. Microbial interactions and immunity response in oral Candida species. Future Microbiology, vol. 15, no. 17, pp. 1653-1677. http://doi.org/10.2217/fmb-2020-0113 PMid:33251818.
    » http://doi.org/10.2217/fmb-2020-0113
  • CHUGH, B. and KAMAL-ELDIN, A., 2020. Bioactive compounds produced by probiotics in food products. Current Opinion in Food Science, vol. 32, pp. 76-82. http://doi.org/10.1016/j.cofs.2020.02.003
    » http://doi.org/10.1016/j.cofs.2020.02.003
  • COUTINHO, D.F., SANT, S.V., SHIN, H., OLIVEIRA, J.T., GOMES, M.E., NEVES, N.M., KHADEMHOSSEINI, A. and REIS, R.L., 2010. Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials, vol. 31, no. 29, pp. 7494-7502. http://doi.org/10.1016/j.biomaterials.2010.06.035 PMid:20663552.
    » http://doi.org/10.1016/j.biomaterials.2010.06.035
  • DE GREGORIO, P.R., PAROLIN, C., ABRUZZO, A., LUPPI, B., PROTTI, M., MERCOLINI, L., SILVA, J.A., GIORDANI, B., MARANGONI, A., NADER-MACÍAS, M.E.F. and VITALI, B., 2020. Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion. Microbial Cell Factories, vol. 19, no. 1, pp. 133. http://doi.org/10.1186/s12934-020-01390-5 PMid:32552788.
    » http://doi.org/10.1186/s12934-020-01390-5
  • DEORUKHKAR, S.C. and ROUSHANI, S., 2017. Virulence traits contributing to pathogenicity of Candida species. Journal of Microbiology & Experimentation, vol. 5, no. 1, pp. 62-65. http://doi.org/10.15406/jmen.2017.05.00140
    » http://doi.org/10.15406/jmen.2017.05.00140
  • DINIZ-NETO, H., SILVA, S.L., CORDEIRO, L.V., SILVA, D.F., OLIVEIRA, R.F., ATHAYDE-FILHO, P.F., OLIVEIRA-FILHO, A.A., GUERRA, F.Q.S. and LIMA, E.O., 2024. Antifungal activity of 2-chloro-N-phenylacetamide: a new molecule with fungicidal and antibiofilm activity against fluconazole-resistant Candida spp. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, e255080. http://doi.org/10.1590/1519-6984.255080
    » http://doi.org/10.1590/1519-6984.255080
  • DOPPALAPUDI, R., VUNDAVALLI, S. and PRABHAT, M.P., 2020. Effect of probiotic bacteria on oral Candida in head-and neck-radiotherapy patients: A randomized clinical trial. Journal of Cancer Research and Therapeutics, vol. 16, no. 3, pp. 470-477. http://doi.org/10.4103/jcrt.JCRT_334_18 PMid:32719253.
    » http://doi.org/10.4103/jcrt.JCRT_334_18
  • FENSTER, K., FREEBURG, B., HOLLARD, C., WONG, C., RØNHAVE LAURSEN, R. and OUWEHAND, A.C., 2019. The production and delivery of probiotics: a review of a practical approach. Microorganisms, vol. 7, no. 3, pp. 83. http://doi.org/10.3390/microorganisms7030083 PMid:30884906.
    » http://doi.org/10.3390/microorganisms7030083
  • GARCIA-CUESTA, C., SARRION-PÉREZ, M.G. and BAGÁN, J.V., 2014. Current treatment of oral candidiasis: a literature review. Journal of Clinical and Experimental Dentistry, vol. 6, no. 5, e576-e582. http://doi.org/10.4317/jced.51798 PMid:25674329.
    » http://doi.org/10.4317/jced.51798
  • GHEORGHE, D.C., NICULESCU, A.G., BÎRCĂ, A.C. and GRUMEZESCU, A.M., 2021. Biomaterials for the prevention of oral candidiasis development. Pharmaceutics, vol. 13, no. 6, pp. 803. http://doi.org/10.3390/pharmaceutics13060803 PMid:34072188.
    » http://doi.org/10.3390/pharmaceutics13060803
  • GOVENDER, M., CHOONARA, Y.E., KUMAR, P., DU TOIT, L.C., VAN VUUREN, S. and PILLAY, V., 2014. A review of the advancements in probiotic delivery: conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, vol. 15, no. 1, pp. 29-43. http://doi.org/10.1208/s12249-013-0027-1 PMid:24222267.
    » http://doi.org/10.1208/s12249-013-0027-1
  • HILL, C., GUARNER, F., REID, G., GIBSON, G.R., MERENSTEIN, D.J., POT, B., MORELLI, L., CANANI, R.B., FLINT, H.J., SALMINEN, S., CALDER, P.C. and SANDERS, M.E., 2014. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, vol. 11, no. 8, pp. 506-514. http://doi.org/10.1038/nrgastro.2014.66 PMid:24912386.
    » http://doi.org/10.1038/nrgastro.2014.66
  • HILLMAN, E.T., LU, H., YAO, T. and NAKATSU, C.H., 2017. Microbial ecology along the gastrointestinal tract. Microbes and Environments, vol. 32, no. 4, pp. 300-313. http://doi.org/10.1264/jsme2.ME17017 PMid:29129876.
    » http://doi.org/10.1264/jsme2.ME17017
  • INTERNATIONAL COMMITTEE ON SYSTEMATICS OF PROKARYOTES – ICSP, 2022 [viewed 21 June 2022]. List of Prokaryotic Names with Position in Nomenclature (LPSN): genus: Lactobacillus [online]. Available from: https://lpsn.dsmz.de/genus/lactobacillus
    » https://lpsn.dsmz.de/genus/lactobacillus
  • ISHIKAWA, K.H., MAYER, M.P., MIYAZIMA, T.Y., MATSUBARA, V.H., SILVA, E.G., PAULA, C.R., CAMPOS, T.T. and NAKAMAE, A.E., 2015. A multispecies probiotic reduces oral Candida colonization in denture wearers. Journal of Prosthodontics, vol. 24, no. 3, pp. 194-199. http://doi.org/10.1111/jopr.12198 PMid:25143068.
    » http://doi.org/10.1111/jopr.12198
  • ITAPARY, C.S., RAMOS, F.Y., DUARTE, C.L.C., BOMFIM, M.R.Q., OLIVEIRA, B.M., HOLANDA, R.A., SANTOS, V.L., GOMES, M.S., BUOZZI, M.E., SOUZA, M.A., ANDRADE, M.C. and MONTEIRO-NETO, V., 2019. Antifungal and antivirulence activity of vaginal Lactobacillus spp. products against Candida vaginal isolates. Pathogens, vol. 8, no. 3, pp. 150. http://doi.org/10.3390/pathogens8030150 PMid:31547398.
    » http://doi.org/10.3390/pathogens8030150
  • ITO, R., MINE, Y., YUMISASHI, Y., YOSHIOKA, R., HAMAOKA, M., TAJI, T., MURAYAMA, T. and NIKAWA, H., 2021. In vivo efficacy of Lacticaseibacillus rhamnosus L8020 in a mouse model of oral candidiasis. Journal of Fungi, vol. 7, no. 5, pp. 322. http://doi.org/10.3390/jof7050322 PMid:33919079.
    » http://doi.org/10.3390/jof7050322
  • JAMES, K.M., MACDONALD, K.W., CHANYI, R.M., CADIEUX, P.A. and BURTON, J.P., 2016. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. Journal of Medical Microbiology, vol. 65, no. 4, pp. 328-336. http://doi.org/10.1099/jmm.0.000226 PMid:26847045.
    » http://doi.org/10.1099/jmm.0.000226
  • JEFFERY-SMITH, A., TAORI, S.K., SCHELENZ, S., JEFFERY, K., JOHNSON, E.M., BORMAN, A., MANUEL, R. and BROWN, C.S., 2017. Candida auris: a review of the literature. Clinical Microbiology Reviews, vol. 31, no. 1, e00029-e17. http://doi.org/10.1128/CMR.00029. PMid:29142078.
  • JØRGENSEN, M.R., KRAGELUND, C., JENSEN, P.Ø., KELLER, M.K. and TWETMAN, S., 2017. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro. Journal of Oral Microbiology, vol. 9, no. 1, pp. 1274582. http://doi.org/10.1080/20002297.2016.1274582 PMid:28326154.
    » http://doi.org/10.1080/20002297.2016.1274582
  • JUSTIZ VAILLANT, A.A. and QURIE, A., 2023 [viewed 27 December 2023]. Immunodeficiency [online]. Treasure Island: StatPearls. Available from: https://pubmed.ncbi.nlm.nih.gov/29763203/
    » https://pubmed.ncbi.nlm.nih.gov/29763203/
  • KALIA, N., SINGH, J. and KAUR, M., 2020. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Annals of Clinical Microbiology and Antimicrobials, vol. 19, no. 1, pp. 5. http://doi.org/10.1186/s12941-020-0347-4 PMid:31992328.
    » http://doi.org/10.1186/s12941-020-0347-4
  • KAŹMIERCZYK-WINCIOREK, M., NĘDZI-GÓRA, M. and SŁOTWIŃSKA, S.M., 2021. The immunomodulating role of probiotics in the prevention and treatment of oral diseases. Central European Journal of Immunology, vol. 46, no. 1, pp. 99-104. http://doi.org/10.5114/ceji.2021.104412 PMid:33897290.
    » http://doi.org/10.5114/ceji.2021.104412
  • KIVANÇ, M. and ER, S., 2020. Biofilm formation of Candida Spp. isolated from the vagina and antibiofilm activities of lactic acid bacteria on the these Candida Isolates. African Health Sciences, vol. 20, no. 2, pp. 641-648. http://doi.org/10.4314/ahs.v20i2.12 PMid:33163025.
    » http://doi.org/10.4314/ahs.v20i2.12
  • KOVACHEV, S., 2018. Defence factors of vaginal lactobacilli. Critical Reviews in Microbiology, vol. 44, no. 1, pp. 31-39. http://doi.org/10.1080/1040841X.2017.1306688 PMid:28418713.
    » http://doi.org/10.1080/1040841X.2017.1306688
  • LEÃO, M.V.P., TAVARES, T.A.A., GONÇALVES, C.R.S., SANTOS, S.S.F., JUNQUEIRA, J.C., DE OLIVEIRA, L.D. and JORGE, A.O.C., 2018. Lactobacillus rhamnosus intake can prevent the development of Candidiasis. Clinical Oral Investigations, vol. 22, no. 7, pp. 2511-2518. http://doi.org/10.1007/s00784-018-2347-8 PMid:29372447.
    » http://doi.org/10.1007/s00784-018-2347-8
  • LEWIS, M.A.O. and WILLIAMS, D.W., 2017. Diagnosis and management of oral candidosis. British Dental Journal, vol. 223, no. 9, pp. 675-681. http://doi.org/10.1038/sj.bdj.2017.886 PMid:29123282.
    » http://doi.org/10.1038/sj.bdj.2017.886
  • MACÊDO, D.P.C., FARIAS, A.M.A., LIMA, N.R.G., SILVA, V.K.A., LEAL, A.F.G. and NEVES, R.P., 2009. Opportunistic yeast infections and enzymatic profile of the etiological agents. Journal of the Brazilian Society of Tropical Medicine, vol. 42, no. 2, pp. 188-191. http://doi.org/10.1590/S0037-8682200900020001. PMid:19448940.
  • MAHASNEH, S.A. and MAHASNEH, A.M., 2017. Probiotics: a promising role in dental health. Dentistry Journal, vol. 5, no. 4, pp. 26. http://doi.org/10.3390/dj5040026 PMid:29563432.
    » http://doi.org/10.3390/dj5040026
  • MAILÄNDER-SÁNCHEZ, D., BRAUNSDORF, C., GRUMAZ, C., MÜLLER, C., LORENZ, S., STEVENS, P., WAGENER, J., HEBECKER, B., HUBE, B., BRACHER, F., SOHN, K. and SCHALLER, M., 2017. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion. PLoS One, vol. 12, no. 10, e0184438. http://doi.org/10.1371/journal.pone.0184438 PMid:29023454.
    » http://doi.org/10.1371/journal.pone.0184438
  • MARCOS-ARIAS, C., ERASO, E., MADARIAGA, L. and QUINDÓS, G., 2011. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complementary and Alternative Medicine, vol. 11, no. 1, pp. 119. http://doi.org/10.1186/1472-6882-11-119 PMid:22118215.
    » http://doi.org/10.1186/1472-6882-11-119
  • MATSUBARA, V.H., BANDARA, H.M.H.N., MAYER, M.P. and SAMARANAYAKE, L.P., 2016. Probiotics as antifungals in mucosal candidiasis. Clinical Infectious Diseases, vol. 62, no. 9, pp. 1143-1153. http://doi.org/10.1093/cid/ciw038 PMid:26826375.
    » http://doi.org/10.1093/cid/ciw038
  • MATSUBARA, V.H., ISHIKAWA, K.H., ANDO-SUGUIMOTO, E.S., BUENO-SILVA, B., NAKAMAE, A.E. and MAYER, M.P., 2017. Probiotic bacteria alter pattern-recognition receptor expression and cytokine profile in a human macrophage model challenged with Candida albicans and lipopolysaccharide. Frontiers in Microbiology, vol. 8, pp. 2280. http://doi.org/10.3389/fmicb.2017.02280 PMid:29238325.
    » http://doi.org/10.3389/fmicb.2017.02280
  • MATSUBARA, V.H., SILVA, E.G., PAULA, C.R., ISHIKAWA, K.H. and NAKAMAE, A.E.M., 2012. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Diseases, vol. 18, no. 3, pp. 260-264. http://doi.org/10.1111/j.1601-0825.2011.01868.x PMid:22059932.
    » http://doi.org/10.1111/j.1601-0825.2011.01868.x
  • MORAD, H.O., WILD, A.M., WIEHR, S., DAVIES, G., MAURER, A., PICHLER, B.J. and THORNTON, C.R., 2018. Pre-clinical imaging of invasive Candidiasis using ImmunoPET/MR. Frontiers in Microbiology, vol. 9, pp. 1996. http://doi.org/10.3389/fmicb.2018.01996 PMid:30190717.
    » http://doi.org/10.3389/fmicb.2018.01996
  • MUNDULA, T., RICCI, F., BARBETTA, B., BACCINI, M. and AMEDEI, A., 2019. Effect of probiotics on oral candidiasis: a systematic review and meta-analysis. Nutrients, vol. 11, no. 10, pp. 2449. http://doi.org/10.3390/nu11102449 PMid:31615039.
    » http://doi.org/10.3390/nu11102449
  • MUÑOZ, J.E., ROSSI, D.C., JABES, D.L., BARBOSA, D.A., CUNHA, F.F., NUNES, L.R., ARRUDA, D.C. and TABORDA, C.P., 2020. In vitro and In vivo inhibitory activity of limonene against different isolates of Candida spp. Journal of Fungi, vol. 6, no. 3, pp. 183. http://doi.org/10.3390/jof6030183 PMid:32971732.
    » http://doi.org/10.3390/jof6030183
  • MUSHI, M.F., MTEMISIKA, C.I., BADER, O., BII, C., MIRAMBO, M.M., GROß, U. and MSHANA, S.E., 2016. High oral carriage of non-albicans Candida spp. among HIV-infected individuals. International Journal of Infectious Diseases, vol. 49, pp. 185-188. http://doi.org/10.1016/j.ijid.2016.07.001 PMid:27401585.
    » http://doi.org/10.1016/j.ijid.2016.07.001
  • NICHOLLS, S., MACCALLUM, D.M., KAFFARNIK, F.A., SELWAY, L., PECK, S.C. and BROWN, A.J., 2011. Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans. Fungal Genetics and Biology, vol. 48, no. 3, pp. 297-305. http://doi.org/10.1016/j.fgb.2010.08.010 PMid:20817114.
    » http://doi.org/10.1016/j.fgb.2010.08.010
  • OLIVEIRA, V.M.C., SANTOS, S.S.F., SILVA, C.R.G., JORGE, A.O.C. and LEÃO, M.V.P., 2016. Lactobacillus is able to alter the virulence and the sensitivity profile of Candida albicans. Journal of Applied Microbiology, vol. 121, no. 6, pp. 1737-1744. http://doi.org/10.1111/jam.13289 PMid:27606962.
    » http://doi.org/10.1111/jam.13289
  • PAPPAS, P.G., KAUFFMAN, C.A., ANDES, D.R., CLANCY, C.J., MARR, K.A., OSTROSKY-ZEICHNER, L., REBOLI, A.C., SCHUSTER, M.G., VAZQUEZ, J.A., WALSH, T.J., ZAOUTIS, T.E. and SOBEL, J.D., 2016. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, vol. 62, no. 4, pp. e1-e50. http://doi.org/10.1093/cid/civ933 PMid:26679628.
    » http://doi.org/10.1093/cid/civ933
  • PAROLIN, C., CROATTI, V., LAGHI, L., GIORDANI, B., TONDI, M.R., DE GREGORIO, P.R., FOSCHI, C. and VITALI, B., 2021. Lactobacillus biofilms influence anti-Candida activity. Frontiers in Microbiology, vol. 12, pp. 750368. http://doi.org/10.3389/fmicb.2021.750368 PMid:34777300.
    » http://doi.org/10.3389/fmicb.2021.750368
  • QUINDÓS, G., GIL-ALONSO, S., MARCOS-ARIAS, C., SEVILLANO, E., MATEO, E., JAUREGIZAR, N. and ERASO, E., 2019. Therapeutic tools for oral candidiasis: current and new antifungal drugs. Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 24, no. 2, pp. e172-e180. http://doi.org/10.4317/medoral.22978 PMid:30818309.
    » http://doi.org/10.4317/medoral.22978
  • RAVIKUMAR, S., WIN, M.S. and CHAI, L.Y., 2015. Optimizing outcomes in immunocompromised hosts: understanding the role of immunotherapy in invasive fungal diseases. Frontiers in Microbiology, vol. 6, pp. 1322. http://doi.org/10.3389/fmicb.2015.01322 PMid:26635780.
    » http://doi.org/10.3389/fmicb.2015.01322
  • RIBEIRO, F.C., IGLESIAS, M.C., BARROS, P.P.D., SANTOS, S.S.F., JORGE, A.O.C. and LEÃO, M.P.V., 2017. Lactobacillus rhamnosus interferes with Candida albicans adherence and biofilm formation: a potential alternative treatment of candidiasis. Austin Journal of Pharmacology and Therapeutics, vol. 9, no. 2, pp. 1133. http://doi.org/10.1111/jam.13324
    » http://doi.org/10.1111/jam.13324
  • RIBEIRO, F.C., JUNQUEIRA, J.C., DOS SANTOS, J.D., DE BARROS, P.P., ROSSONI, R.D., SHUKLA, S., FUCHS, B.B., SHUKLA, A. and MYLONAKIS, E., 2020. Development of probiotic formulations for oral candidiasis prevention: gellan gum as a carrier to deliver Lactobacillus paracasei 284. Antimicrobial Agents and Chemotherapy, vol. 64, no. 6, e02323-19. http://doi.org/10.1128/AAC.02323-19 PMid:32253208.
    » http://doi.org/10.1128/AAC.02323-19
  • RICHARDSON, M. and LASS‐FLÖRL, C., 2008. Changing epidemiology of systemic fungal infections. Clinical Microbiology and Infection, vol. 14, suppl. 4, pp. 5-24. http://doi.org/10.1111/j.1469-0691.2008.01978.x PMid:18430126.
    » http://doi.org/10.1111/j.1469-0691.2008.01978.x
  • ROSSONI, R.D., FUCHS, B.B., DE BARROS, P.P., VELLOSO, M.D., JORGE, A.O., JUNQUEIRA, J.C. and MYLONAKIS, E., 2017. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection. PLoS One, vol. 12, no. 3, e0173332. http://doi.org/10.1371/journal.pone.0173332 PMid:28267809.
    » http://doi.org/10.1371/journal.pone.0173332
  • ROSSONI, R.D., BARROS, P.P., DE ALVARENGA, J.A., RIBEIRO, F.C., VELLOSO, M.D.S., FUCHS, B.B., MYLONAKIS, E., JORGE, A.O.C. and JUNQUEIRA, J.C., 2018. Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis. Biofouling, vol. 34, no. 2, pp. 212-225. http://doi.org/10.1080/08927014.2018.1425402 PMid:29380647.
    » http://doi.org/10.1080/08927014.2018.1425402
  • ROSSONI, R.D., BARROS, P.P., MENDONÇA, I.D.C., MEDINA, R.P., SILVA, D.H.S., FUCHS, B.B., JUNQUEIRA, J.C. and MYLONAKIS, E., 2020. The postbiotic activity of Lactobacillus paracasei 28.4 against Candida auris. Frontiers in Cellular and Infection Microbiology, vol. 10, pp. 397. http://doi.org/10.3389/fcimb.2020.00397 PMid:32850495.
    » http://doi.org/10.3389/fcimb.2020.00397
  • SAGHROUNI, F.B.A.J., ABDELJELIL, J.B., BOUKADIDA, J. and SAID, M.B., 2013. Molecular methods for strain typing of Candida albicans: a review. Journal of Applied Microbiology, vol. 114, no. 6, pp. 1559-1574. http://doi.org/10.1111/jam.12132 PMid:23311504.
    » http://doi.org/10.1111/jam.12132
  • SALARI, S. and ALMANI, P.G.N., 2020. Antifungal effects of Lactobacillus acidophilus and Lactobacillus plantarum against different oral Candida species isolated from HIV/AIDS patients: an in vitro study. Journal of Oral Microbiology, vol. 12, no. 1, pp. 1769386. http://doi.org/10.1080/20002297.2020.1769386 PMid:32922676.
    » http://doi.org/10.1080/20002297.2020.1769386
  • SANTOS, C.I., CAMPOS, C.D.L., NUNES-NETO, W.R., CARMO, M.S., NOGUEIRA, F.A.B., FERREIRA, R.M., COSTA, E.P.S., GONZAGA, L.F., ARAÚJO, J.M.M., MONTEIRO, J.M., MONTEIRO, C.R.A.V., PLATNER, F.S., FIGUEIREDO, I.F.S., HOLANDA, R.A., MONTEIRO, S.G., FERNANDES, E.S., MONTEIRO, A.S. and MONTEIRO-NETO, V., 2021. Genomic analysis of Limosilactobacillus fermentum ATCC 23271, a potential probiotic strain with anti-Candida activity. Journal of Fungi, vol. 7, no. 10, pp. 794. http://doi.org/10.3390/jof7100794 PMid:34682216.
    » http://doi.org/10.3390/jof7100794
  • SARDI, J.C.O., SCORZONI, L., BERNARDI, T., FUSCO-ALMEIDA, A.M. and GIANNINI, M.M., 2013. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology, vol. 62, no. 1, pp. 10-24. http://doi.org/10.1099/jmm.0.045054-0 PMid:23180477.
    » http://doi.org/10.1099/jmm.0.045054-0
  • SEGERS, M.E. and LEBEER, S., 2014. Towards a better understanding of Lactobacillus rhamnosus GG-host interactions. Microbial Cell Factories, vol. 13, no. 1, suppl. 1, pp. S7. http://doi.org/10.1186/1475-2859-13-S1-S7 PMid:25186587.
    » http://doi.org/10.1186/1475-2859-13-S1-S7
  • SONG, Y.G. and LEE, S.H., 2017. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface. Archives of Oral Biology, vol. 76, pp. 1-6. http://doi.org/10.1016/j.archoralbio.2016.12.014 PMid:28063305.
    » http://doi.org/10.1016/j.archoralbio.2016.12.014
  • STAVROPOULOU, E. and BEZIRTZOGLOU, E., 2020. Probiotics in medicine: a long debate. Frontiers in Immunology, vol. 11, pp. 2192. http://doi.org/10.3389/fimmu.2020.02192 PMid:33072084.
    » http://doi.org/10.3389/fimmu.2020.02192
  • STIVALA, A., CAROTA, G., FUOCHI, V. and FURNERI, P.M., 2021. Lactobacillus rhamnosus AD3 as a promising alternative for probiotic products. Biomolecules, vol. 11, no. 1, pp. 94. http://doi.org/10.3390/biom11010094 PMid:33450875.
    » http://doi.org/10.3390/biom11010094
  • TAN, Y., LEONHARD, M., MOSER, D., MA, S. and SCHNEIDER-STICKLER, B., 2018. Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Archives of Oral Biology, vol. 85, pp. 40-45. http://doi.org/10.1016/j.archoralbio.2017.10.002 PMid:29031236.
    » http://doi.org/10.1016/j.archoralbio.2017.10.002
  • TURNER, S.A. and BUTLER, G., 2014. The Candida pathogenic species complex. Cold Spring Harbor Perspectives in Medicine, vol. 4, no. 9, pp. a019778. http://doi.org/10.1101/cshperspect.a019778 PMid:25183855.
    » http://doi.org/10.1101/cshperspect.a019778
  • VAZQUEZ-MUNOZ, R., THOMPSON, A., RUSSELL, J.T., SOBUE, T., ZHOU, Y. and DONGARI-BAGTZOGLOU, A., 2022. Insights from the Lactobacillus johnsonii genome suggest the production of metabolites with antibiofilm activity against the pathobiont Candida albicans. Frontiers in Microbiology, vol. 13, pp. 853762. http://doi.org/10.3389/fmicb.2022.853762 PMid:35330775.
    » http://doi.org/10.3389/fmicb.2022.853762
  • VICARIOTTO, F., MOGNA, L. and DEL PIANO, M., 2014. Effectiveness of the two microorganisms Lactobacillus fermentum LF15 and Lactobacillus plantarum LP01, formulated in slow-release vaginal tablets, in women affected by bacterial vaginosis: a pilot study. Journal of Clinical Gastroenterology, vol. 48, no. 1, suppl. 1, pp. S106-S112. http://doi.org/10.1097/MCG.0000000000000226 PMid:25291116.
    » http://doi.org/10.1097/MCG.0000000000000226
  • VILA, T., SULTAN, A.S., MONTELONGO-JAUREGUI, D. and JABRA-RIZK, M.A., 2020. Oral candidiasis: a disease of opportunity. Journal of Fungi, vol. 6, no. 1, pp. 15. http://doi.org/10.3390/jof6010015 PMid:31963180.
    » http://doi.org/10.3390/jof6010015
  • VILELA, S.F., BARBOSA, J.O., ROSSONI, R.D., SANTOS, J.D., PRATA, M.C., ANBINDER, A.L., JORGE, A.O. and JUNQUEIRA, J.C., 2015. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence, vol. 6, no. 1, pp. 29-39. http://doi.org/10.4161/21505594.2014.981486 PMid:25654408.
    » http://doi.org/10.4161/21505594.2014.981486
  • VORLÄNDER, K., KAMPEN, I., FINKE, J.H. and KWADE, A., 2020. Along the process chain to probiotic tablets: evaluation of mechanical impacts on microbial viability. Pharmaceutics, vol. 12, no. 1, pp. 66. http://doi.org/10.3390/pharmaceutics12010066 PMid:31952192.
    » http://doi.org/10.3390/pharmaceutics12010066
  • WILLIAMS, D. and LEWIS, M., 2011. Pathogenesis and treatment of oral candidosis. Journal of Oral Microbiology, vol. 3, no. 1, pp. 5771. http://doi.org/10.3402/jom.v3i0.5771 PMid:21547018.
    » http://doi.org/10.3402/jom.v3i0.5771
  • WITCHLEY, J.N., PENUMETCHA, P., ABON, N.V., WOOLFORD, C.A., MITCHELL, A.P. and NOBLE, S.M., 2019. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host & Microbe, vol. 25, no. 3, pp. 432-443.e6. http://doi.org/10.1016/j.chom.2019.02.008 PMid:30870623.
    » http://doi.org/10.1016/j.chom.2019.02.008
  • ZANGL, I., PAP, I.J., ASPÖCK, C. and SCHÜLLER, C., 2020. The role of Lactobacillus species in the control of Candida via biotrophic interactions. Microbial Cell, vol. 7, no. 1, pp. 1-14. http://doi.org/10.15698/mic2020.01.702 PMid:31921929.
    » http://doi.org/10.15698/mic2020.01.702
  • ZENG, Y., FADAAK, A., ALOMEIR, N., WU, T.T., RUSTCHENKO, E., QING, S., BAO, J., GILBERT, C. and XIAO, J., 2022. Lactobacillus plantarum disrupts S. mutansC. albicans cross-kingdom biofilms. Frontiers in Cellular and Infection Microbiology, vol. 12, pp. 872012. http://doi.org/10.3389/fcimb.2022.872012 PMid:35392605.
    » http://doi.org/10.3389/fcimb.2022.872012
  • ZHENG, J., WITTOUCK, S., SALVETTI, E., FRANZ, C.M.A.P., HARRIS, H.M.B., MATTARELLI, P., O’TOOLE, P.W., POT, B., VANDAMME, P., WALTER, J., WATANABE, K., WUYTS, S., FELIS, G.E., GÄNZLE, M.G. and LEBEER, S., 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, vol. 70, no. 4, pp. 2782-2858. http://doi.org/10.1099/ijsem.0.004107 PMid:32293557.
    » http://doi.org/10.1099/ijsem.0.004107

Publication Dates

  • Publication in this collection
    16 Sept 2024
  • Date of issue
    2024

History

  • Received
    24 Jan 2024
  • Accepted
    16 July 2024
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br